MAE4Rec: Storage-saving Transformer for Sequential Recommendations

Kesen Zhao, Xiangyu Zhao, Zijian Zhang, Muyang Li
{"title":"MAE4Rec: Storage-saving Transformer for Sequential Recommendations","authors":"Kesen Zhao, Xiangyu Zhao, Zijian Zhang, Muyang Li","doi":"10.1145/3511808.3557461","DOIUrl":null,"url":null,"abstract":"Sequential recommender systems (SRS) aim to infer the users' preferences from their interaction history and predict items that will be of interest to the users. The majority of SRS models typically incorporate all historical interactions for next-item recommendations. Despite their success, feeding all interactions into the model without filtering may lead to severe practical issues: (i) redundant interactions hinder the SRS model from capturing the users' intentions; (ii) the computational cost is huge, as the computational complexity is proportional to the length of the interaction sequence; (iii) more memory space is necessitated to store all interaction records from all users. To this end, we propose a novel storage-saving SRS framework, MAE4Rec, based on a unidirectional self-attentive mechanism and masked autoencoder. Specifically, in order to lower the storage consumption, MAE4Rec first masks and discards a large percentage of historical interactions, and then infers the next interacted item solely based on the latent representation of unmarked ones. Experiments on two real-world datasets demonstrate that the proposed model achieves competitive performance against state-of-the-art SRS models with more than 40% compression of storage.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Sequential recommender systems (SRS) aim to infer the users' preferences from their interaction history and predict items that will be of interest to the users. The majority of SRS models typically incorporate all historical interactions for next-item recommendations. Despite their success, feeding all interactions into the model without filtering may lead to severe practical issues: (i) redundant interactions hinder the SRS model from capturing the users' intentions; (ii) the computational cost is huge, as the computational complexity is proportional to the length of the interaction sequence; (iii) more memory space is necessitated to store all interaction records from all users. To this end, we propose a novel storage-saving SRS framework, MAE4Rec, based on a unidirectional self-attentive mechanism and masked autoencoder. Specifically, in order to lower the storage consumption, MAE4Rec first masks and discards a large percentage of historical interactions, and then infers the next interacted item solely based on the latent representation of unmarked ones. Experiments on two real-world datasets demonstrate that the proposed model achieves competitive performance against state-of-the-art SRS models with more than 40% compression of storage.
MAE4Rec:存储节省变压器顺序建议
顺序推荐系统(SRS)旨在从用户的交互历史中推断用户的偏好,并预测用户将感兴趣的项目。大多数SRS模型通常将所有历史交互合并为下一项建议。尽管他们取得了成功,但将所有交互输入模型而不进行过滤可能会导致严重的实际问题:(i)冗余交互阻碍了SRS模型捕捉用户的意图;(ii)计算成本巨大,计算复杂度与交互序列的长度成正比;(iii)需要更多的内存空间来存储来自所有用户的所有交互记录。为此,我们提出了一种基于单向自关注机制和掩码自编码器的新型存储节省SRS框架MAE4Rec。具体来说,为了降低存储消耗,MAE4Rec首先屏蔽和丢弃很大比例的历史交互,然后仅根据未标记的潜在表示推断下一个交互项。在两个真实数据集上的实验表明,所提出的模型与最先进的SRS模型相比,具有超过40%的存储压缩性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信