Automatic Instruction-Level Software-Only Recovery

George A. Reis, J. Chang, David I. August
{"title":"Automatic Instruction-Level Software-Only Recovery","authors":"George A. Reis, J. Chang, David I. August","doi":"10.1109/MM.2007.4","DOIUrl":null,"url":null,"abstract":"As chip densities and clock rates increase, processors are becoming more susceptible to transient faults that can affect program correctness. Computer architects have typically addressed reliability issues by adding redundant hardware, but these techniques are often too expensive to be used widely. Software-only reliability techniques have shown promise in their ability to protect against soft-errors without any hardware overhead. However, existing low-level software-only fault tolerance techniques have only addressed the problem of detecting faults, leaving recovery largely unaddressed. In this paper, we present the concept, implementation, and evaluation of automatic, instruction-level, software-only recovery techniques, as well as various specific techniques representing different trade-offs between reliability and performance. Our evaluation shows that these techniques fulfill the promises of instruction-level, software-only fault tolerance by offering a wide range of flexible recovery options","PeriodicalId":228470,"journal":{"name":"International Conference on Dependable Systems and Networks (DSN'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Dependable Systems and Networks (DSN'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MM.2007.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

As chip densities and clock rates increase, processors are becoming more susceptible to transient faults that can affect program correctness. Computer architects have typically addressed reliability issues by adding redundant hardware, but these techniques are often too expensive to be used widely. Software-only reliability techniques have shown promise in their ability to protect against soft-errors without any hardware overhead. However, existing low-level software-only fault tolerance techniques have only addressed the problem of detecting faults, leaving recovery largely unaddressed. In this paper, we present the concept, implementation, and evaluation of automatic, instruction-level, software-only recovery techniques, as well as various specific techniques representing different trade-offs between reliability and performance. Our evaluation shows that these techniques fulfill the promises of instruction-level, software-only fault tolerance by offering a wide range of flexible recovery options
自动指令级软件恢复
随着芯片密度和时钟速率的增加,处理器越来越容易受到影响程序正确性的瞬态故障的影响。计算机架构师通常通过添加冗余硬件来解决可靠性问题,但这些技术通常过于昂贵而无法广泛使用。纯软件可靠性技术在不增加任何硬件开销的情况下能够防止软错误。然而,现有的低级软件容错技术只解决了检测故障的问题,而没有解决恢复问题。在本文中,我们介绍了自动、指令级、纯软件恢复技术的概念、实现和评估,以及代表可靠性和性能之间不同权衡的各种特定技术。我们的评估表明,这些技术通过提供广泛的灵活恢复选项,实现了指令级、仅软件容错的承诺
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信