Vehicle Accident Foresight System Using Bigdata Intelligent Random Forest Algorithm

A. Aburas, S. Eyono, Omesan Naidoo
{"title":"Vehicle Accident Foresight System Using Bigdata Intelligent Random Forest Algorithm","authors":"A. Aburas, S. Eyono, Omesan Naidoo","doi":"10.1109/CYBERC.2018.00055","DOIUrl":null,"url":null,"abstract":"commercial vehicles are used to improve people life. One of the main concern is the safety of these commercial vehicle during accidents. This research paper presents the idea of a Vehicle Accident Foresight System (VAFS). Accident datasets for VAFS are based on actual vehicle accident datasets extracted from open-source datasets. VAFS aims to analyze past accident data using the random forest algorithm to analyze and predict future accidents. One thousand decision trees are used in implementation. The implemented prototype consists of a dashboard which can specify accident locations according to time, it can also identify the elements which contribute the most to accident severity. The prediction model of VAFS has a minimum accuracy of 69% and a maximum accuracy of 100%.","PeriodicalId":282903,"journal":{"name":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2018.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

commercial vehicles are used to improve people life. One of the main concern is the safety of these commercial vehicle during accidents. This research paper presents the idea of a Vehicle Accident Foresight System (VAFS). Accident datasets for VAFS are based on actual vehicle accident datasets extracted from open-source datasets. VAFS aims to analyze past accident data using the random forest algorithm to analyze and predict future accidents. One thousand decision trees are used in implementation. The implemented prototype consists of a dashboard which can specify accident locations according to time, it can also identify the elements which contribute the most to accident severity. The prediction model of VAFS has a minimum accuracy of 69% and a maximum accuracy of 100%.
基于大数据智能随机森林算法的车辆事故预测系统
商用车是用来改善人们生活的。其中一个主要问题是这些商用车在发生事故时的安全性。本文提出了车辆事故预警系统(VAFS)的思想。VAFS的事故数据集基于从开源数据集中提取的实际车辆事故数据集。VAFS旨在利用随机森林算法分析过去的事故数据,以分析和预测未来的事故。在实现过程中使用了一千个决策树。实现的原型包括一个仪表板,它可以根据时间指定事故地点,它还可以识别对事故严重程度贡献最大的元素。VAFS预测模型的最小精度为69%,最大精度为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信