Building semantic richness among natural language content

S. Al-reyaee, P. Vijayakumar
{"title":"Building semantic richness among natural language content","authors":"S. Al-reyaee, P. Vijayakumar","doi":"10.1109/INTECH.2012.6457821","DOIUrl":null,"url":null,"abstract":"In this work we propose Inclusive vector to keep the key words available in natural language database. The inclusive vectors are generated by the process of extraction of words given in the source and the cited items of records published in the ISI Thompson Citation Indexes. The proposed inclusive vector exhibits related words and the degree of their relationships. In this work we present the results of the implications of using vectors on the automatic classification of natural language text. In this system, preprocessed documents, extra words as well as word stems are at first found. We have used an enhanced algorithm to bring further semantic relations between the cited and source items in citation databases.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we propose Inclusive vector to keep the key words available in natural language database. The inclusive vectors are generated by the process of extraction of words given in the source and the cited items of records published in the ISI Thompson Citation Indexes. The proposed inclusive vector exhibits related words and the degree of their relationships. In this work we present the results of the implications of using vectors on the automatic classification of natural language text. In this system, preprocessed documents, extra words as well as word stems are at first found. We have used an enhanced algorithm to bring further semantic relations between the cited and source items in citation databases.
在自然语言内容中构建语义丰富性
在这项工作中,我们提出了包含向量来保持自然语言数据库中的关键词可用性。包含向量是通过提取源中给出的词和ISI汤普森引文索引中发表的记录的被引项来生成的。所提出的包容性向量展示了相关词及其关系的程度。在这项工作中,我们提出了使用向量对自然语言文本自动分类的影响的结果。在该系统中,首先发现经过预处理的文档、多余的单词和词干。我们使用了一种增强的算法,在引文数据库中进一步建立被引条目和源条目之间的语义关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信