Jointly learning to align and convert graphemes to phonemes with neural attention models

Shubham Toshniwal, Karen Livescu
{"title":"Jointly learning to align and convert graphemes to phonemes with neural attention models","authors":"Shubham Toshniwal, Karen Livescu","doi":"10.1109/SLT.2016.7846248","DOIUrl":null,"url":null,"abstract":"We propose an attention-enabled encoder-decoder model for the problem of grapheme-to-phoneme conversion. Most previous work has tackled the problem via joint sequence models that require explicit alignments for training. In contrast, the attention-enabled encoder-decoder model allows for jointly learning to align and convert characters to phonemes. We explore different types of attention models, including global and local attention, and our best models achieve state-of-the-art results on three standard data sets (CMU-Dict, Pronlex, and NetTalk).","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

We propose an attention-enabled encoder-decoder model for the problem of grapheme-to-phoneme conversion. Most previous work has tackled the problem via joint sequence models that require explicit alignments for training. In contrast, the attention-enabled encoder-decoder model allows for jointly learning to align and convert characters to phonemes. We explore different types of attention models, including global and local attention, and our best models achieve state-of-the-art results on three standard data sets (CMU-Dict, Pronlex, and NetTalk).
用神经注意模型共同学习对齐和转换字素到音素
我们提出了一个注意支持的编码器-解码器模型来解决字素到音素的转换问题。以前的大多数工作都是通过联合序列模型来解决这个问题,这种模型需要明确的训练对齐。相比之下,支持注意力的编码器-解码器模型允许共同学习对齐和将字符转换为音素。我们探索了不同类型的注意力模型,包括全局和局部注意力,我们最好的模型在三个标准数据集(CMU-Dict, Pronlex和NetTalk)上实现了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信