{"title":"Statistical attribute filtering to detect faint extended astronomical sources","authors":"P. Teeninga, U. Moschini, S. Trager, M. Wilkinson","doi":"10.1515/mathm-2016-0006","DOIUrl":null,"url":null,"abstract":"Abstract In astronomy, sky surveys contain a large number of light-emitting sources, often with intensities close to the noise level. Automatic extraction of astronomical objects is therefore needed. SExtractor is a widely used program for automated source extraction and cataloguing, but it is not optimal with faint extended sources. Using SExtractor as a reference, the paper describes an improvement of a previous method proposed by the authors. It is a Max-Tree-based method for extraction of faint extended sources without using a stronger image smoothing. The Max-Tree structure is a hierarchical representation of an image, in which attributes can be computed in every node. Object detection is performed on the nodes of the tree and it relies on the distribution of a statistic calculated using the power attribute, compared to the expected distribution in case of noise. Statistical tests are presented, a comparison with the object extraction of SExtractor is shown and results are discussed.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2016-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Abstract In astronomy, sky surveys contain a large number of light-emitting sources, often with intensities close to the noise level. Automatic extraction of astronomical objects is therefore needed. SExtractor is a widely used program for automated source extraction and cataloguing, but it is not optimal with faint extended sources. Using SExtractor as a reference, the paper describes an improvement of a previous method proposed by the authors. It is a Max-Tree-based method for extraction of faint extended sources without using a stronger image smoothing. The Max-Tree structure is a hierarchical representation of an image, in which attributes can be computed in every node. Object detection is performed on the nodes of the tree and it relies on the distribution of a statistic calculated using the power attribute, compared to the expected distribution in case of noise. Statistical tests are presented, a comparison with the object extraction of SExtractor is shown and results are discussed.