{"title":"On the complexity of linear systems: an approach via rate distortion theory and emulating systems","authors":"Eric D. B. Wendel, J. Baillieul, Joseph Hollmann","doi":"10.23919/ACC55779.2023.10155927","DOIUrl":null,"url":null,"abstract":"We define the complexity of a continuous-time linear system to be the minimum number of bits required to describe its forward increments to a desired level of fidelity, and compute this quantity using the rate distortion function of a Gaussian source of uncertainty in those increments. The complexity of a linear system has relevance in control-communications contexts requiring local and dynamic decision-making based on sampled data representations. We relate this notion of complexity to the design of attention-varying controllers, and demonstrate a novel methodology for constructing source codes via the endpoint maps of so-called emulating systems, with potential for non-parametric, data-based simulation and analysis of unknown dynamical systems.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10155927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We define the complexity of a continuous-time linear system to be the minimum number of bits required to describe its forward increments to a desired level of fidelity, and compute this quantity using the rate distortion function of a Gaussian source of uncertainty in those increments. The complexity of a linear system has relevance in control-communications contexts requiring local and dynamic decision-making based on sampled data representations. We relate this notion of complexity to the design of attention-varying controllers, and demonstrate a novel methodology for constructing source codes via the endpoint maps of so-called emulating systems, with potential for non-parametric, data-based simulation and analysis of unknown dynamical systems.