Determining the optimal number of clusters using a new evolutionary algorithm

Wei Lu, Issa Traoré
{"title":"Determining the optimal number of clusters using a new evolutionary algorithm","authors":"Wei Lu, Issa Traoré","doi":"10.1109/ICTAI.2005.57","DOIUrl":null,"url":null,"abstract":"Estimating the optimal number of clusters for a dataset is one of the most essential issues in cluster analysis. An improper preselection for the number of clusters might easily lead to bad clustering outcome. In this paper, we propose a new evolutionary algorithm to address this issue. Specifically, the proposed evolutionary algorithm defines a new entropy-based fitness function, and three new genetic operators for splitting, merging, and removing clusters. Empirical evaluations using the synthetic dataset and an existing benchmark show that the proposed evolutionary algorithm can exactly estimate the optimal number of clusters for a set of data","PeriodicalId":294694,"journal":{"name":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2005.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Estimating the optimal number of clusters for a dataset is one of the most essential issues in cluster analysis. An improper preselection for the number of clusters might easily lead to bad clustering outcome. In this paper, we propose a new evolutionary algorithm to address this issue. Specifically, the proposed evolutionary algorithm defines a new entropy-based fitness function, and three new genetic operators for splitting, merging, and removing clusters. Empirical evaluations using the synthetic dataset and an existing benchmark show that the proposed evolutionary algorithm can exactly estimate the optimal number of clusters for a set of data
使用一种新的进化算法确定最优簇数
估计一个数据集的最优聚类数量是聚类分析中最重要的问题之一。如果对聚类数量的预选择不当,很容易导致不良的聚类结果。在本文中,我们提出了一种新的进化算法来解决这个问题。具体来说,该进化算法定义了一个新的基于熵的适应度函数,以及用于分裂、合并和移除聚类的三个新的遗传算子。使用合成数据集和现有基准进行的经验评估表明,所提出的进化算法可以准确地估计出一组数据的最优聚类数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信