Testing heterogeneity in inter-rater reliability

František Bartoš, P. Martinková, M. Brabec
{"title":"Testing heterogeneity in inter-rater reliability","authors":"František Bartoš, P. Martinková, M. Brabec","doi":"10.31234/osf.io/s4rc6","DOIUrl":null,"url":null,"abstract":"Estimating the inter-rater reliability (IRR) is important for assessing and improving the quality of ratings. In some cases, the IRR may differ between groups due to their features. To test heterogeneity in IRR, the second-order generalized estimating equations (GEE2) and linear mixed-effects models (LME) were already used. Another method capable of estimating the components for IRR is generalized additive models (GAM). This paper presents a simulation study evaluating the performance of these methods in estimating variance components and in testing heterogeneity in IRR. We consider a wide range of sample sizes and various scenarios leading to heterogenous IRR. The results show, that while the LME and GAM models perform similarly and yield reliable estimates, the GEE2 models may lead to incorrect results.","PeriodicalId":293872,"journal":{"name":"Springer Proceedings in Mathematics & Statistics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Springer Proceedings in Mathematics & Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31234/osf.io/s4rc6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Estimating the inter-rater reliability (IRR) is important for assessing and improving the quality of ratings. In some cases, the IRR may differ between groups due to their features. To test heterogeneity in IRR, the second-order generalized estimating equations (GEE2) and linear mixed-effects models (LME) were already used. Another method capable of estimating the components for IRR is generalized additive models (GAM). This paper presents a simulation study evaluating the performance of these methods in estimating variance components and in testing heterogeneity in IRR. We consider a wide range of sample sizes and various scenarios leading to heterogenous IRR. The results show, that while the LME and GAM models perform similarly and yield reliable estimates, the GEE2 models may lead to incorrect results.
间信度的异质性检验
评估评级间信度(IRR)对于评估和提高评级质量具有重要意义。在某些情况下,由于不同组的特征,IRR可能会有所不同。为了检验IRR的异质性,已经使用了二阶广义估计方程(GEE2)和线性混合效应模型(LME)。另一种估算内部收益率分量的方法是广义加性模型(GAM)。本文提出了一项模拟研究,评估这些方法在估计方差成分和检验IRR异质性方面的性能。我们考虑了广泛的样本量和导致异质IRR的各种场景。结果表明,虽然LME和GAM模型表现相似,并产生可靠的估计,但GEE2模型可能导致不正确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信