Inverse Impulsive Optimal Neural Control for Complex Networks Applied to Epidemic Influenza Type A Model

Nancy F. Ramirez, A. Alanis, E. Hernández-Vargas, Daniel Ríos-Rivera
{"title":"Inverse Impulsive Optimal Neural Control for Complex Networks Applied to Epidemic Influenza Type A Model","authors":"Nancy F. Ramirez, A. Alanis, E. Hernández-Vargas, Daniel Ríos-Rivera","doi":"10.1109/LA-CCI48322.2021.9769820","DOIUrl":null,"url":null,"abstract":"This paper proposes to mitigate the effects of the spread of influenza type A, employing a pinning neural impulsive optimal control for complex networks. The model and its dynamics of the network are unknown; therefore, it is necessary to design and train a neural identifier through extended Kalman filter algorithm to help provide the precise non-linear model for this complex network. The dynamics of the nodes are represented by a discrete version of the Susceptible-Infected-Recovered model.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes to mitigate the effects of the spread of influenza type A, employing a pinning neural impulsive optimal control for complex networks. The model and its dynamics of the network are unknown; therefore, it is necessary to design and train a neural identifier through extended Kalman filter algorithm to help provide the precise non-linear model for this complex network. The dynamics of the nodes are represented by a discrete version of the Susceptible-Infected-Recovered model.
复杂网络逆脉冲最优神经控制在甲型流感模型中的应用
为了减轻甲型流感传播的影响,本文提出了一种针对复杂网络的钉住神经脉冲最优控制方法。网络的模型及其动力学是未知的;因此,有必要通过扩展卡尔曼滤波算法设计和训练神经辨识器,以帮助为该复杂网络提供精确的非线性模型。节点的动态由易感-感染-恢复模型的离散版本表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信