The Crown Predictive Model of Cold-Rolled Zirconium Alloy Strip Sheet Based on Machine Learning Algorithm

Yuan Cao, Jianguo Cao, Yingqi Gao, Ben Wang, Pengfei Zhang, Fang Li, Bo Gao
{"title":"The Crown Predictive Model of Cold-Rolled Zirconium Alloy Strip Sheet Based on Machine Learning Algorithm","authors":"Yuan Cao, Jianguo Cao, Yingqi Gao, Ben Wang, Pengfei Zhang, Fang Li, Bo Gao","doi":"10.1115/icone29-92252","DOIUrl":null,"url":null,"abstract":"\n To solve the problem that the crown accuracy directly affects the profile and flatness of the zirconium alloy strip caused by the multi-schedule and more than sixty passes cold rolling of nuclear zirconium alloy strip. The crown predictive model is established based on support vector regress algorithm (SVR), and the parameters of the SVR algorithm are optimized by the SAPSO algorithm. Meanwhile, the crown predictive model based on the SAPSO-SVR algorithm shows that the relative coefficient of predicted values is higher than 0.94. Industry test demonstrate that the crown predictive model provides a new method for zirconium alloy strip shape control and an approach to optimize the control strategy. The proposed model provides a new method and idea for shape control and optimization research in the zirconium alloy plane rolling process.","PeriodicalId":317622,"journal":{"name":"Volume 10: Advanced Methods of Manufacturing for Nuclear Reactors and Components","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Advanced Methods of Manufacturing for Nuclear Reactors and Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-92252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problem that the crown accuracy directly affects the profile and flatness of the zirconium alloy strip caused by the multi-schedule and more than sixty passes cold rolling of nuclear zirconium alloy strip. The crown predictive model is established based on support vector regress algorithm (SVR), and the parameters of the SVR algorithm are optimized by the SAPSO algorithm. Meanwhile, the crown predictive model based on the SAPSO-SVR algorithm shows that the relative coefficient of predicted values is higher than 0.94. Industry test demonstrate that the crown predictive model provides a new method for zirconium alloy strip shape control and an approach to optimize the control strategy. The proposed model provides a new method and idea for shape control and optimization research in the zirconium alloy plane rolling process.
基于机器学习算法的冷轧锆合金带材凸度预测模型
解决了核锆带材冷轧多道次、60余道次造成的冠精度直接影响锆合金带材的形面和平整度的问题。基于支持向量回归算法(SVR)建立冠状预测模型,并利用SAPSO算法对SVR算法的参数进行优化。同时,基于SAPSO-SVR算法的冠状预测模型显示预测值的相对系数大于0.94。工业试验表明,该凸度预测模型为锆合金板形控制提供了一种新的方法和优化控制策略的途径。该模型为锆合金平面轧制过程的形状控制与优化研究提供了一种新的方法和思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信