A Study on Failure Prediction Using Time Series Data of Hydraulic Excavator

Shota Oguma, S. Omatsu, S. Ohno, K. Iwasaki
{"title":"A Study on Failure Prediction Using Time Series Data of Hydraulic Excavator","authors":"Shota Oguma, S. Omatsu, S. Ohno, K. Iwasaki","doi":"10.5687/iscie.35.84","DOIUrl":null,"url":null,"abstract":"Since unexpected machine failures are huge losses for users, maintenance activities are essential. If the failures can be predicted in advance using a supervised learning, the machines can be maintained before they break down and some failures can be prevented. However, although a large number of failure data are required to predict failures using a supervised learning, failures rarely occur in the actual field. In this study, we propose to detect the failure of a hydraulic excavator using an autoencoder, which is an unsupervised learning. By using the autoencoder to model normal state data, the failure can be predicted in advance. This paper shows the results of evaluating failure predictions using the LSTM (Long Short-Term Memory) autoencoder model for actual failure of hydraulic excavators.","PeriodicalId":403477,"journal":{"name":"Transactions of the Institute of Systems, Control and Information Engineers","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Systems, Control and Information Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5687/iscie.35.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since unexpected machine failures are huge losses for users, maintenance activities are essential. If the failures can be predicted in advance using a supervised learning, the machines can be maintained before they break down and some failures can be prevented. However, although a large number of failure data are required to predict failures using a supervised learning, failures rarely occur in the actual field. In this study, we propose to detect the failure of a hydraulic excavator using an autoencoder, which is an unsupervised learning. By using the autoencoder to model normal state data, the failure can be predicted in advance. This paper shows the results of evaluating failure predictions using the LSTM (Long Short-Term Memory) autoencoder model for actual failure of hydraulic excavators.
基于时间序列数据的液压挖掘机故障预测研究
由于意外的机器故障对用户来说是巨大的损失,因此维护活动是必不可少的。如果可以使用监督学习提前预测故障,则可以在机器故障之前对其进行维护,并且可以防止一些故障。然而,尽管使用监督学习来预测故障需要大量的故障数据,但在实际领域中很少发生故障。在本研究中,我们提出使用自动编码器来检测液压挖掘机的故障,这是一种无监督学习。利用自编码器对正常状态数据进行建模,可以提前预测故障。本文给出了利用LSTM (Long - Short-Term Memory)自编码器模型对液压挖掘机实际故障进行故障预测评估的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信