Application of Matter Element Information Entropy and SVM in Lithium Battery Efficiency Evaluation and Prediction

Niu Guo-Cheng, Hu Zhen, H. Dongmei
{"title":"Application of Matter Element Information Entropy and SVM in Lithium Battery Efficiency Evaluation and Prediction","authors":"Niu Guo-Cheng, Hu Zhen, H. Dongmei","doi":"10.1109/ICMIC.2018.8529896","DOIUrl":null,"url":null,"abstract":"The state of health (SOH) of the power batteries is one of the most important performances of the electric vehicle power batteries system. In order to comprehensively evaluate the health of the batteries, the stereoscopic cross compound matter element is used in parameters of batteries charging and discharging, the joint weight of the evaluation index is determined by the analytic hierarchy process(AHP) and the maximum entropy method, and the matter element-maximum information entropy is used to carry out the quantitative calculation analysis for the health index of the lithium batteries. Parameter-optimizing Support Vector Machine is used to predict the health index of lithium batteries. The experimental results show that this method has a good guiding function for the state of health analysis, it provides a theoretical basis for the use of the power batteries.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8529896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The state of health (SOH) of the power batteries is one of the most important performances of the electric vehicle power batteries system. In order to comprehensively evaluate the health of the batteries, the stereoscopic cross compound matter element is used in parameters of batteries charging and discharging, the joint weight of the evaluation index is determined by the analytic hierarchy process(AHP) and the maximum entropy method, and the matter element-maximum information entropy is used to carry out the quantitative calculation analysis for the health index of the lithium batteries. Parameter-optimizing Support Vector Machine is used to predict the health index of lithium batteries. The experimental results show that this method has a good guiding function for the state of health analysis, it provides a theoretical basis for the use of the power batteries.
物元信息熵和支持向量机在锂电池效率评价与预测中的应用
动力电池的健康状态(SOH)是电动汽车动力电池系统最重要的性能之一。为了对电池的健康状况进行综合评价,在电池充放电参数中采用立体交叉复合物元,采用层次分析法和最大熵法确定评价指标的联合权重,并采用物元-最大信息熵法对锂电池的健康指标进行定量计算分析。采用参数优化支持向量机对锂电池健康指标进行预测。实验结果表明,该方法对动力电池的健康状态分析具有良好的指导作用,为动力电池的使用提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信