Fall detection method using Wi-Fi channel state information

Yaxin Ran, Jiang Yu, Jun Chang, Zheng Zhang
{"title":"Fall detection method using Wi-Fi channel state information","authors":"Yaxin Ran, Jiang Yu, Jun Chang, Zheng Zhang","doi":"10.1117/12.2559790","DOIUrl":null,"url":null,"abstract":"Aiming at the problems of high cost and complex deployment of traditional human behavior recognition method system, a method for obtaining channel state information (CSI) for human behavior recognition using commercial Wi-Fi equipment is proposed. Using the amplitude and phase characteristics in the CSI as the base signal, the power spectrum entropy is used as a new feature to build a fingerprint library. The support vector machine (SVM) based on artificial fish swarm algorithm (AFSA) is used to classify and identify the action. The optimization of the classification is achieved by optimizing the parameter penalty factor and kernel function parameters in the SVM. According to the verification of real environmental data, the average recognition rate reached 94.64%.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2559790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problems of high cost and complex deployment of traditional human behavior recognition method system, a method for obtaining channel state information (CSI) for human behavior recognition using commercial Wi-Fi equipment is proposed. Using the amplitude and phase characteristics in the CSI as the base signal, the power spectrum entropy is used as a new feature to build a fingerprint library. The support vector machine (SVM) based on artificial fish swarm algorithm (AFSA) is used to classify and identify the action. The optimization of the classification is achieved by optimizing the parameter penalty factor and kernel function parameters in the SVM. According to the verification of real environmental data, the average recognition rate reached 94.64%.
使用Wi-Fi通道状态信息的跌落检测方法
针对传统人类行为识别方法系统成本高、部署复杂等问题,提出了一种利用商用Wi-Fi设备获取用于人类行为识别的信道状态信息(CSI)的方法。以CSI的幅值和相位特征作为基准信号,利用功率谱熵作为新的特征来构建指纹库。采用基于人工鱼群算法(AFSA)的支持向量机(SVM)对动作进行分类识别。通过优化支持向量机中的参数惩罚因子和核函数参数来实现分类的优化。根据真实环境数据验证,平均识别率达到94.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信