C. Surman, R. Potyrailo, W. Morris, Timothy Wortley, Mark Vincent, Rafael Diana, Vincent Pizzi, Jeffrey Carter, Gerard Gach
{"title":"Temperature-independent passive RFID pressure sensors for single-use bioprocess components","authors":"C. Surman, R. Potyrailo, W. Morris, Timothy Wortley, Mark Vincent, Rafael Diana, Vincent Pizzi, Jeffrey Carter, Gerard Gach","doi":"10.1109/RFID.2011.5764640","DOIUrl":null,"url":null,"abstract":"Single-use biopharmaceutical manufacturing requires monitoring of critical manufacturing parameters. However, the lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. We report an approach for temperature-independent pressure sensing in single-use bioprocess components using passive radio-frequency identification (RFID) sensors. An RFID pressure sensor is fabricated by applying a pressure sensitive flexible membrane to an RFID-tag-based transducer and a layer that modulates the electromagnetic field (EMF) generated in the RFID sensor antenna. The sensor signal is modulated upon pressure-induced flexing of the membrane, providing a desired quantitative response of pressure of the fluid during the operation of the single-use component. We demonstrate a temperature-independent RFID pressure sensor that was tested to measure pressures from −5 to 33 psi with the ± 0.25 psi accuracy after gamma irradiation. Temperature-independent pressure response is provided from the multivariate analysis of the measured impedance of the sensor.","PeriodicalId":222446,"journal":{"name":"2011 IEEE International Conference on RFID","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on RFID","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID.2011.5764640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Single-use biopharmaceutical manufacturing requires monitoring of critical manufacturing parameters. However, the lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. We report an approach for temperature-independent pressure sensing in single-use bioprocess components using passive radio-frequency identification (RFID) sensors. An RFID pressure sensor is fabricated by applying a pressure sensitive flexible membrane to an RFID-tag-based transducer and a layer that modulates the electromagnetic field (EMF) generated in the RFID sensor antenna. The sensor signal is modulated upon pressure-induced flexing of the membrane, providing a desired quantitative response of pressure of the fluid during the operation of the single-use component. We demonstrate a temperature-independent RFID pressure sensor that was tested to measure pressures from −5 to 33 psi with the ± 0.25 psi accuracy after gamma irradiation. Temperature-independent pressure response is provided from the multivariate analysis of the measured impedance of the sensor.