VideoPipe

Mohammad Salehe, Zhiming Hu, S. H. Mortazavi, Iqbal Mohomed, Tim Capes
{"title":"VideoPipe","authors":"Mohammad Salehe, Zhiming Hu, S. H. Mortazavi, Iqbal Mohomed, Tim Capes","doi":"10.1145/3366626.3368131","DOIUrl":null,"url":null,"abstract":"Real-time video processing in the home, with the benefits of low latency and strong privacy guarantees, enables virtual reality (VR) applications, augmented reality (AR) applications and other next-gen interactive applications. However, processing video feeds with computationally expensive machine learning algorithms may be impractical on a single device due to resource limitations. Fortunately, there are ubiquitous underutilized heterogeneous edge devices in the home. In this paper, we propose VideoPipe, a system that bridges the gap and runs flexible video processing pipelines on multiple devices. Towards this end, with inspirations from Function-as-a-Service (FaaS) architecture, we have unified the runtime environments of the edge devices. We do this by introducing modules, which are the basic units of a video processing pipeline and can be executed on any device. With the uniform design of input and output interfaces, we can easily connect any of the edge devices to form a video processing pipeline. Moreover, as some devices support containers, we further design and implement stateless services for more computationally expensive tasks such as object detection, pose detection and image classification. As they are stateless, they can be shared across pipelines and can be scaled easily if necessary. To evaluate the performance of our system, we design and implement a fitness application on three devices connected through Wi-Fi. We also implement a gesture-based Internet of Things (IoT) control application. Experimental results show the the promises of VideoPipe for efficient video analytics on the edge.","PeriodicalId":120474,"journal":{"name":"Proceedings of the 20th International Middleware Conference Industrial Track","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Middleware Conference Industrial Track","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366626.3368131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Real-time video processing in the home, with the benefits of low latency and strong privacy guarantees, enables virtual reality (VR) applications, augmented reality (AR) applications and other next-gen interactive applications. However, processing video feeds with computationally expensive machine learning algorithms may be impractical on a single device due to resource limitations. Fortunately, there are ubiquitous underutilized heterogeneous edge devices in the home. In this paper, we propose VideoPipe, a system that bridges the gap and runs flexible video processing pipelines on multiple devices. Towards this end, with inspirations from Function-as-a-Service (FaaS) architecture, we have unified the runtime environments of the edge devices. We do this by introducing modules, which are the basic units of a video processing pipeline and can be executed on any device. With the uniform design of input and output interfaces, we can easily connect any of the edge devices to form a video processing pipeline. Moreover, as some devices support containers, we further design and implement stateless services for more computationally expensive tasks such as object detection, pose detection and image classification. As they are stateless, they can be shared across pipelines and can be scaled easily if necessary. To evaluate the performance of our system, we design and implement a fitness application on three devices connected through Wi-Fi. We also implement a gesture-based Internet of Things (IoT) control application. Experimental results show the the promises of VideoPipe for efficient video analytics on the edge.
VideoPipe
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信