Hybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition

E. Radwan
{"title":"Hybrid of Rough Neural Networks for Arabic/Farsi Handwriting Recognition","authors":"E. Radwan","doi":"10.14569/IJARAI.2013.020207","DOIUrl":null,"url":null,"abstract":"Handwritten character recognition is one of the focused areas of research in the field of Pattern Recognition. In this paper, a hybrid model of rough neural network has been developed for recognizing isolated Arabic/Farsi digital characters. It solves the neural network problems; proneness to overfitting, and the empirical nature of model development using rough sets and the dissimilarity analysis. Moreover the perturbation in the input data is violated using rough neuron. This paper describes an evolutionary rough neural network based technique to recognize Arabic/Farsi isolated handwritten digital characters. This method involves hierarchical feature extraction, data clustering and classification. In contrast with conventional neural network, a comparative study is appeared. Also, the details and limitations are discussed.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2013.020207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Handwritten character recognition is one of the focused areas of research in the field of Pattern Recognition. In this paper, a hybrid model of rough neural network has been developed for recognizing isolated Arabic/Farsi digital characters. It solves the neural network problems; proneness to overfitting, and the empirical nature of model development using rough sets and the dissimilarity analysis. Moreover the perturbation in the input data is violated using rough neuron. This paper describes an evolutionary rough neural network based technique to recognize Arabic/Farsi isolated handwritten digital characters. This method involves hierarchical feature extraction, data clustering and classification. In contrast with conventional neural network, a comparative study is appeared. Also, the details and limitations are discussed.
混合粗糙神经网络用于阿拉伯语/波斯语手写识别
手写体字符识别是模式识别领域的研究热点之一。本文建立了一种粗糙神经网络的混合模型,用于识别孤立的阿拉伯/波斯语数字字符。它解决了神经网络问题;过度拟合的倾向,以及使用粗糙集和不相似分析的模型开发的经验性质。并且利用粗糙神经元对输入数据的扰动进行了处理。本文提出了一种基于进化粗糙神经网络的阿拉伯文/波斯文孤立手写数字字符识别技术。该方法包括层次特征提取、数据聚类和分类。并与传统神经网络进行了对比研究。此外,还讨论了细节和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信