WWBP-SQT-lite: Multi-level Models and Difference Embeddings for Moments of Change Identification in Mental Health Forums

Adithya V Ganesan, Vasudha Varadarajan, Juhi Mittal, Shashanka Subrahmanya, Matthew Matero, Nikita Soni, Sharath Chandra Guntuku, J. Eichstaedt, H. A. Schwartz
{"title":"WWBP-SQT-lite: Multi-level Models and Difference Embeddings for Moments of Change Identification in Mental Health Forums","authors":"Adithya V Ganesan, Vasudha Varadarajan, Juhi Mittal, Shashanka Subrahmanya, Matthew Matero, Nikita Soni, Sharath Chandra Guntuku, J. Eichstaedt, H. A. Schwartz","doi":"10.18653/v1/2022.clpsych-1.25","DOIUrl":null,"url":null,"abstract":"Psychological states unfold dynamically; to understand and measure mental health at scale we need to detect and measure these changes from sequences of online posts. We evaluate two approaches to capturing psychological changes in text: the first relies on computing the difference between the embedding of a message with the one that precedes it, the second relies on a “human-aware” multi-level recurrent transformer (HaRT). The mood changes of timeline posts of users were annotated into three classes, ‘ordinary,’ ‘switching’ (positive to negative or vice versa) and ‘escalations’ (increasing in intensity). For classifying these mood changes, the difference-between-embeddings technique – applied to RoBERTa embeddings – showed the highest overall F1 score (0.61) across the three different classes on the test set. The technique particularly outperformed the HaRT transformer (and other baselines) in the detection of switches (F1 = .33) and escalations (F1 = .61).Consistent with the literature, the language use patterns associated with mental-health related constructs in prior work (including depression, stress, anger and anxiety) predicted both mood switches and escalations.","PeriodicalId":107109,"journal":{"name":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.clpsych-1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Psychological states unfold dynamically; to understand and measure mental health at scale we need to detect and measure these changes from sequences of online posts. We evaluate two approaches to capturing psychological changes in text: the first relies on computing the difference between the embedding of a message with the one that precedes it, the second relies on a “human-aware” multi-level recurrent transformer (HaRT). The mood changes of timeline posts of users were annotated into three classes, ‘ordinary,’ ‘switching’ (positive to negative or vice versa) and ‘escalations’ (increasing in intensity). For classifying these mood changes, the difference-between-embeddings technique – applied to RoBERTa embeddings – showed the highest overall F1 score (0.61) across the three different classes on the test set. The technique particularly outperformed the HaRT transformer (and other baselines) in the detection of switches (F1 = .33) and escalations (F1 = .61).Consistent with the literature, the language use patterns associated with mental-health related constructs in prior work (including depression, stress, anger and anxiety) predicted both mood switches and escalations.
WWBP-SQT-lite:心理健康论坛中变化时刻识别的多层次模型和差异嵌入
心理状态是动态展开的;为了大规模地理解和测量心理健康,我们需要从网上帖子的序列中检测和测量这些变化。我们评估了捕捉文本中心理变化的两种方法:第一种依赖于计算信息嵌入与之前信息之间的差异,第二种依赖于“人类意识”的多级循环变压器(HaRT)。用户的时间轴帖子的情绪变化被标注为“普通”、“转换”(积极到消极或相反)和“升级”(强度增加)三类。为了对这些情绪变化进行分类,应用于RoBERTa嵌入的嵌入差异技术在测试集中的三个不同类别中显示出最高的F1总分(0.61)。该技术在检测开关(F1 = 0.33)和升级(F1 = 0.61)方面的表现特别优于HaRT变压器(和其他基线)。与文献一致,先前工作中与心理健康相关构念(包括抑郁、压力、愤怒和焦虑)相关的语言使用模式预测了情绪的转换和升级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信