Dynamic analysis and numerical simulation of a surface vertical well on the reverse fault side

Song Qin, H. Lin
{"title":"Dynamic analysis and numerical simulation of a surface vertical well on the reverse fault side","authors":"Song Qin, H. Lin","doi":"10.1177/01445987231187656","DOIUrl":null,"url":null,"abstract":"With the help of mechanical models and numerical calculations, the research obtained: (1) the range of compressive shear stress in well bore is in the shape of “dam body” with the dip angle of a reverse fault, also, the magnitude of the compressive shear stress is related to the load factor and the maximum compressive principal stress which have an increasing relationship; (2) the superposition stress of lateral abutment stress and SZZ of a working face is σA, which is related to the distance between reverse faults; (3) the closer the distance to the reverse fault and the greater the vertical well displacement and deformation as the advancement length of the working face increases, the sensitivity to the effects of the reverse fault and mining is: XDISP > ZDISP > YDISP, and the sensitivity to the boundary is such that: ZDISP > YDISP > XIDSP; (4) the closer the distance to the reverse fault and the larger the length of the working face, the greater the displacement and deformation of the vertical well. In addition, the sensitivity to the effects of reverse faults and mining is: XDISP > ZDISP > YDISP; (5) when the working face continues to be mined, the shear stress on the well bore and the circumference of the hole is sensitive to the influences of reverse faults as follows: SXZ > SYZ > SXY; (7) the density of strain energy at the well bore is most sensitive to the lateral distance to the working face strike mining line. Based on these results, it is proposed to arrange large-diameter pressure relief boreholes around the hole and arrange layers to eliminate the influence of the well bore boundary and eliminate the accumulation of shear strain energy around such a well bore.","PeriodicalId":444405,"journal":{"name":"Energy Exploration & Exploitation","volume":"16 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987231187656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the help of mechanical models and numerical calculations, the research obtained: (1) the range of compressive shear stress in well bore is in the shape of “dam body” with the dip angle of a reverse fault, also, the magnitude of the compressive shear stress is related to the load factor and the maximum compressive principal stress which have an increasing relationship; (2) the superposition stress of lateral abutment stress and SZZ of a working face is σA, which is related to the distance between reverse faults; (3) the closer the distance to the reverse fault and the greater the vertical well displacement and deformation as the advancement length of the working face increases, the sensitivity to the effects of the reverse fault and mining is: XDISP > ZDISP > YDISP, and the sensitivity to the boundary is such that: ZDISP > YDISP > XIDSP; (4) the closer the distance to the reverse fault and the larger the length of the working face, the greater the displacement and deformation of the vertical well. In addition, the sensitivity to the effects of reverse faults and mining is: XDISP > ZDISP > YDISP; (5) when the working face continues to be mined, the shear stress on the well bore and the circumference of the hole is sensitive to the influences of reverse faults as follows: SXZ > SYZ > SXY; (7) the density of strain energy at the well bore is most sensitive to the lateral distance to the working face strike mining line. Based on these results, it is proposed to arrange large-diameter pressure relief boreholes around the hole and arrange layers to eliminate the influence of the well bore boundary and eliminate the accumulation of shear strain energy around such a well bore.
逆断层侧地面直井动态分析与数值模拟
通过力学模型和数值计算,研究得出:(1)井内压剪应力范围呈逆断层倾角的“坝体”形状,且压剪应力大小与荷载系数和最大压主应力呈递增关系;(2)工作面侧向支承应力与SZZ的叠加应力为σA,与逆断层之间的距离有关;(3)随着工作面推进长度的增加,距离逆断层越近,竖井位移和变形越大,对逆断层和开采影响的敏感性为:XDISP > ZDISP > YDISP,对边界的敏感性为:ZDISP > YDISP > XIDSP;(4)离逆断层越近,工作面长度越大,直井的位移变形越大。对逆断层和采矿影响的敏感性为:XDISP > ZDISP > YDISP;(5)工作面继续开采时,井眼和孔周切应力对逆断层的影响较为敏感,表现为:SXZ > SYZ > SXY;(7)井筒应变能密度对工作面走向采线的侧向距离最为敏感。在此基础上,提出采用大直径泄压钻孔绕孔布置,分层布置,消除井筒边界的影响,消除井筒周围剪切应变能的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信