Tahmid Latif, Laura Gonzalez, J. Dieffenderfer, Yuwei Liao, M. Hernandez, V. Misra, E. Lobaton, A. Bozkurt
{"title":"Preliminary Assessment of Human Biological Responses to Low-level Ozone","authors":"Tahmid Latif, Laura Gonzalez, J. Dieffenderfer, Yuwei Liao, M. Hernandez, V. Misra, E. Lobaton, A. Bozkurt","doi":"10.1109/SENSORS47125.2020.9278620","DOIUrl":null,"url":null,"abstract":"Multi-modal wearable sensors monitoring physiology and environment simultaneously would offer a great promise to manage respiratory health, especially for asthmatic patients. In this study, we present a preliminary investigation of the correlation between ozone exposure, heart rate, heart rate variability, and lung function. As the first step, we tested the effect of low-level ozone exposure in a sample size of four healthy individuals. Test subjects underwent controlled exposure from 0.06 to 0.08 ppm of ozone and filtered air on two separate exposure days. Our results indicate an increment in mean heart rate in three out of four test subjects when exposed to ozone. We have also observed that changes in mean heart rate has a positive correlation with changes in lung function and a negative correlation with changes in neutrophil count. These results provide a baseline understanding of healthy subjects as a control group.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-modal wearable sensors monitoring physiology and environment simultaneously would offer a great promise to manage respiratory health, especially for asthmatic patients. In this study, we present a preliminary investigation of the correlation between ozone exposure, heart rate, heart rate variability, and lung function. As the first step, we tested the effect of low-level ozone exposure in a sample size of four healthy individuals. Test subjects underwent controlled exposure from 0.06 to 0.08 ppm of ozone and filtered air on two separate exposure days. Our results indicate an increment in mean heart rate in three out of four test subjects when exposed to ozone. We have also observed that changes in mean heart rate has a positive correlation with changes in lung function and a negative correlation with changes in neutrophil count. These results provide a baseline understanding of healthy subjects as a control group.