N. Stefanakis, Symeon Delikaris-Manias, A. Mouchtaris
{"title":"Acoustic Beamforming in Front of a Reflective Plane","authors":"N. Stefanakis, Symeon Delikaris-Manias, A. Mouchtaris","doi":"10.23919/EUSIPCO.2018.8553103","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of beamforming with a planar microphone array placed in front of a wall of the room, so that the microphone array plane is perpendicular to that of the wall. While this situation is very likely to occur in a real life problem, the reflections introduced by the adjacent wall can be the cause of a serious mismatch between the actual acoustic paths and the traditionally employed free-field propagation model. We present an adaptation from the free-field to the so-called reflection-aware propagation model, that exploits an in-situ estimation of the complex and frequency-dependent wall reflectivity. Results presented in a real environment demonstrate that the proposed approach may bring significant improvements to the beamforming process compared to the free-field propagation model, as well as compared to other reflection-aware models that have been recently proposed.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we consider the problem of beamforming with a planar microphone array placed in front of a wall of the room, so that the microphone array plane is perpendicular to that of the wall. While this situation is very likely to occur in a real life problem, the reflections introduced by the adjacent wall can be the cause of a serious mismatch between the actual acoustic paths and the traditionally employed free-field propagation model. We present an adaptation from the free-field to the so-called reflection-aware propagation model, that exploits an in-situ estimation of the complex and frequency-dependent wall reflectivity. Results presented in a real environment demonstrate that the proposed approach may bring significant improvements to the beamforming process compared to the free-field propagation model, as well as compared to other reflection-aware models that have been recently proposed.