A 2D to 3D conversion method based on support vector machine and image classification

Yudong Guan, Bo-Liang Yu, Chunli Ti, Yan Ding
{"title":"A 2D to 3D conversion method based on support vector machine and image classification","authors":"Yudong Guan, Bo-Liang Yu, Chunli Ti, Yan Ding","doi":"10.1109/ICMLC.2014.7009097","DOIUrl":null,"url":null,"abstract":"With the development of 3D technology, converting 2D videos available into 3D videos has been an important way to gain 3D contents. In the conversion, a crucial step is how to obtain a more accurate depth map. This paper proposes a method for depth extraction based on color and geometric information of the original image. Firstly, we generate a qualitative depth map by SVM and classify image scenes into three categories. Then depending on geometric information, a geometric depth map can be generated by vanishing lines detection and gradient plane assignment. At last, we blend two depth maps to get a final depth map, which has more widely application and improves accuracy of depth better.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of 3D technology, converting 2D videos available into 3D videos has been an important way to gain 3D contents. In the conversion, a crucial step is how to obtain a more accurate depth map. This paper proposes a method for depth extraction based on color and geometric information of the original image. Firstly, we generate a qualitative depth map by SVM and classify image scenes into three categories. Then depending on geometric information, a geometric depth map can be generated by vanishing lines detection and gradient plane assignment. At last, we blend two depth maps to get a final depth map, which has more widely application and improves accuracy of depth better.
一种基于支持向量机和图像分类的二维到三维转换方法
随着三维技术的发展,将现有的二维视频转换为三维视频已成为获取三维内容的重要途径。在转换过程中,一个关键的步骤是如何获得更准确的深度图。提出了一种基于原始图像颜色和几何信息的深度提取方法。首先,利用支持向量机生成定性深度图,并将图像场景分为三类;然后根据几何信息,通过消失线检测和梯度平面分配生成几何深度图。最后将两幅深度图进行融合得到最终的深度图,应用范围更广,深度精度也得到了更好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信