Chaotic motion and diffusion in a power system

K. L. Lo, T. Zhu
{"title":"Chaotic motion and diffusion in a power system","authors":"K. L. Lo, T. Zhu","doi":"10.1109/EMPD.1998.705546","DOIUrl":null,"url":null,"abstract":"This paper describes for the first time the chaotic motion and diffusion for an example multi-machine power system using Hamiltonian formation. The existence of chaotic motion under some conditions is confirmed by the calculation of maximum Lyapunov exponents. It is revealed numerically that the random-like motion of Arnold diffusion can carry the system state arbitrarily close to any region of the phase space consistent with energy conservation while the ordinary chaos is only inhabited in a specific region of the whole phase space. A brief analysis of the reason for diffusion is also included.","PeriodicalId":434526,"journal":{"name":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1998.705546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes for the first time the chaotic motion and diffusion for an example multi-machine power system using Hamiltonian formation. The existence of chaotic motion under some conditions is confirmed by the calculation of maximum Lyapunov exponents. It is revealed numerically that the random-like motion of Arnold diffusion can carry the system state arbitrarily close to any region of the phase space consistent with energy conservation while the ordinary chaos is only inhabited in a specific region of the whole phase space. A brief analysis of the reason for diffusion is also included.
电力系统中的混沌运动和扩散
本文首次用哈密顿矩阵描述了一个实例多机电力系统的混沌运动和扩散。通过计算最大李雅普诺夫指数,证实了混沌运动在某些条件下的存在性。数值研究表明,Arnold扩散的类随机运动可以使系统状态任意接近相空间中符合能量守恒的任何区域,而普通混沌只存在于整个相空间的特定区域。本文还简要分析了扩散的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信