Impact of different morphological profiles on the classification accuracy of urban hyperspectral data

B. Waske, S. Linden, J. Benediktsson, Andreas Rabe, P. Hostert
{"title":"Impact of different morphological profiles on the classification accuracy of urban hyperspectral data","authors":"B. Waske, S. Linden, J. Benediktsson, Andreas Rabe, P. Hostert","doi":"10.1109/WHISPERS.2009.5289078","DOIUrl":null,"url":null,"abstract":"We present a detailed study on the classification of urban hyperspectral data with morphological profiles (MP). Although such a spectral-spatial classification approach may significantly increase achieved accuracy, the computational complexity as well as the increased dimensionality and redundancy of such data sets are potential drawbacks. This can be overcome by feature selection. Moreover it is useful to derive detailed information on the contribution of different components from MP to the classification accuracy by evaluating these subsets. We apply a wrapper approach for feature selection based on support vector machines (SVM) with sequential feature forward selection (FFS) search strategy to two hyperspectral data sets that contain the first principal components (PC) and various corresponding MP from an urban area. In doing so, we identify feature subsets of increasing size that perform best in terms of kappa for the given setup. Results clearly demonstrate that maximum classification accuracies are achieved already on small feature subsets with few morphological profiles.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a detailed study on the classification of urban hyperspectral data with morphological profiles (MP). Although such a spectral-spatial classification approach may significantly increase achieved accuracy, the computational complexity as well as the increased dimensionality and redundancy of such data sets are potential drawbacks. This can be overcome by feature selection. Moreover it is useful to derive detailed information on the contribution of different components from MP to the classification accuracy by evaluating these subsets. We apply a wrapper approach for feature selection based on support vector machines (SVM) with sequential feature forward selection (FFS) search strategy to two hyperspectral data sets that contain the first principal components (PC) and various corresponding MP from an urban area. In doing so, we identify feature subsets of increasing size that perform best in terms of kappa for the given setup. Results clearly demonstrate that maximum classification accuracies are achieved already on small feature subsets with few morphological profiles.
不同形态轮廓对城市高光谱数据分类精度的影响
本文对城市高光谱数据的形态特征(MP)分类进行了详细研究。尽管这种光谱空间分类方法可以显著提高实现的精度,但计算复杂性以及这些数据集的维数和冗余度的增加是潜在的缺点。这可以通过特征选择来克服。此外,通过评估这些子集,可以获得MP中不同成分对分类精度贡献的详细信息。我们将基于支持向量机(SVM)和序列特征前向选择(FFS)搜索策略的包装方法应用于包含城市地区第一主成分(PC)和各种相应MP的两个高光谱数据集的特征选择。在这样做的过程中,我们确定了在给定设置的kappa方面表现最佳的不断增加的特征子集。结果清楚地表明,在较少形态学轮廓的小特征子集上已经实现了最大的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信