Binary visual features for ROV motion estimation

F. Ferreira, G. Veruggio, M. Caccia, G. Bruzzone
{"title":"Binary visual features for ROV motion estimation","authors":"F. Ferreira, G. Veruggio, M. Caccia, G. Bruzzone","doi":"10.1109/OCEANS-BERGEN.2013.6608116","DOIUrl":null,"url":null,"abstract":"Binary feature descriptors are a recent and promising trend in the computer vision field. Nonetheless, they are not yet enough studied when compared to the more established floating-point features. Thus, the need of testing this kind of feature descriptors arises. In particular, in the underwater domain very few works used binary feature descriptors. Therefore, this article tries to explore this recent trend and to test the latest algorithms of this kind. The context of application is Remotely Operated Vehicle (ROV) motion estimation. Experimental data is used to validate each approach and both a qualitative and quantitative analysis is shown. The results show that BRIEF is the best approach for this kind of application.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6608116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Binary feature descriptors are a recent and promising trend in the computer vision field. Nonetheless, they are not yet enough studied when compared to the more established floating-point features. Thus, the need of testing this kind of feature descriptors arises. In particular, in the underwater domain very few works used binary feature descriptors. Therefore, this article tries to explore this recent trend and to test the latest algorithms of this kind. The context of application is Remotely Operated Vehicle (ROV) motion estimation. Experimental data is used to validate each approach and both a qualitative and quantitative analysis is shown. The results show that BRIEF is the best approach for this kind of application.
ROV运动估计的二值视觉特征
二值特征描述符是计算机视觉领域的一个新兴趋势。尽管如此,与更成熟的浮点特征相比,它们还没有得到足够的研究。因此,需要测试这种类型的特征描述符。特别是在水下领域,很少有作品使用二元特征描述符。因此,本文试图探索这一最新趋势,并对这类最新算法进行测试。应用的背景是远程操作车辆(ROV)的运动估计。实验数据用于验证每种方法,并给出了定性和定量分析。结果表明,BRIEF是这类应用的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信