Zhihui Wu, Yang Xiao, Enyuan Zhou, Qingqi Pei, Quan Wang
{"title":"A Solution to Data Accessibility Across Heterogeneous Blockchains","authors":"Zhihui Wu, Yang Xiao, Enyuan Zhou, Qingqi Pei, Quan Wang","doi":"10.1109/ICPADS51040.2020.00062","DOIUrl":null,"url":null,"abstract":"Cross-heterogeneous blockchain interactions have been attracting much attention due to their application in depository blockchains mutual access and cross-blockchain identity authentication. Trusted access across heterogeneous chains is gradually becoming a hot challenge. In order to ensure cross-blockchain trusted access, the majority of the current works focus on on-chain notaries and the relay chain model. However, these methods have the following drawbacks: 1) notaries on the chain are more vulnerable to attacks due to their high degree of centralization, which causes off-chain users to lose their trust and thus exacerbates the off-chain trust crisis; 2) although the relay model involves multiple parties in maintenance and supervision and enjoys a more robust trust, the paticipatant nodes are relatively fixed, which impose a terrible dilemma that invalid nodes cannot participate in consensus formation in a timely manner, thus progressively disrupting the connectivity of the relay across heterogeneous chains and eventually reducing the rate of trusted mutual access. In this article, we propose a novel general framework for cross-heterogeneous blockchain communication based on a periodical committee rotation mechanism to support information exchange of diverse transactions across multiple heterogeneous blockchain systems. Connecting heterogeneous blockchains through committees has a more robust trust than the notary method. In order to eliminate the impact of downtime nodes in a timely manner, we periodically reorganize the committee and give priority to replacing downed nodes to ensure the reliability of the system. In addition, a message-oriented verification mechanism is designed to improve the rate of trusted intervisit across heterogeneous chains. We have built a prototype of the scheme and conducted simulation experiments on the current mainstream blockchain for message exchange across heterogeneous chains. The results show that our solution has a good performance both in inter-chain access rate and system stability.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Cross-heterogeneous blockchain interactions have been attracting much attention due to their application in depository blockchains mutual access and cross-blockchain identity authentication. Trusted access across heterogeneous chains is gradually becoming a hot challenge. In order to ensure cross-blockchain trusted access, the majority of the current works focus on on-chain notaries and the relay chain model. However, these methods have the following drawbacks: 1) notaries on the chain are more vulnerable to attacks due to their high degree of centralization, which causes off-chain users to lose their trust and thus exacerbates the off-chain trust crisis; 2) although the relay model involves multiple parties in maintenance and supervision and enjoys a more robust trust, the paticipatant nodes are relatively fixed, which impose a terrible dilemma that invalid nodes cannot participate in consensus formation in a timely manner, thus progressively disrupting the connectivity of the relay across heterogeneous chains and eventually reducing the rate of trusted mutual access. In this article, we propose a novel general framework for cross-heterogeneous blockchain communication based on a periodical committee rotation mechanism to support information exchange of diverse transactions across multiple heterogeneous blockchain systems. Connecting heterogeneous blockchains through committees has a more robust trust than the notary method. In order to eliminate the impact of downtime nodes in a timely manner, we periodically reorganize the committee and give priority to replacing downed nodes to ensure the reliability of the system. In addition, a message-oriented verification mechanism is designed to improve the rate of trusted intervisit across heterogeneous chains. We have built a prototype of the scheme and conducted simulation experiments on the current mainstream blockchain for message exchange across heterogeneous chains. The results show that our solution has a good performance both in inter-chain access rate and system stability.