Clustering Genes Using Heterogeneous Data Sources

Erliang Zeng, Chengyong Yang, Tao Li, G. Narasimhan
{"title":"Clustering Genes Using Heterogeneous Data Sources","authors":"Erliang Zeng, Chengyong Yang, Tao Li, G. Narasimhan","doi":"10.4018/jkdb.2010040102","DOIUrl":null,"url":null,"abstract":"Clustering of gene expression data is a standard exploratory technique used to identify closely related genes. Many other sources of data are also likely to be of great assistance in the analysis of gene expression data. This data provides a mean to begin elucidating the large-scale modular organization of the cell. The authors consider the challenging task of developing exploratory analytical techniques to deal with multiple complete and incomplete information sources. The Multi-Source Clustering (MSC) algorithm developed performs clustering with multiple, but complete, sources of data. To deal with incomplete data sources, the authors adopted the MPCK-means clustering algorithms to perform exploratory analysis on one complete source and other potentially incomplete sources provided in the form of constraints. This paper presents a new clustering algorithm MSC to perform exploratory analysis using two or more diverse but complete data sources, studies the effectiveness of constraints sets and robustness of the constrained clustering algorithm using multiple sources of incomplete biological data, and incorporates such incomplete data into constrained clustering algorithm in form of constraints sets.","PeriodicalId":160270,"journal":{"name":"Int. J. Knowl. Discov. Bioinform.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Discov. Bioinform.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jkdb.2010040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Clustering of gene expression data is a standard exploratory technique used to identify closely related genes. Many other sources of data are also likely to be of great assistance in the analysis of gene expression data. This data provides a mean to begin elucidating the large-scale modular organization of the cell. The authors consider the challenging task of developing exploratory analytical techniques to deal with multiple complete and incomplete information sources. The Multi-Source Clustering (MSC) algorithm developed performs clustering with multiple, but complete, sources of data. To deal with incomplete data sources, the authors adopted the MPCK-means clustering algorithms to perform exploratory analysis on one complete source and other potentially incomplete sources provided in the form of constraints. This paper presents a new clustering algorithm MSC to perform exploratory analysis using two or more diverse but complete data sources, studies the effectiveness of constraints sets and robustness of the constrained clustering algorithm using multiple sources of incomplete biological data, and incorporates such incomplete data into constrained clustering algorithm in form of constraints sets.
利用异构数据源聚类基因
基因表达数据聚类是一种标准的探索性技术,用于识别密切相关的基因。许多其他数据来源也可能对基因表达数据的分析有很大的帮助。这些数据提供了一种开始阐明细胞的大规模模块化组织的方法。作者考虑了开发探索性分析技术来处理多个完整和不完整信息源的挑战性任务。所开发的多源聚类(MSC)算法对多个但完整的数据源进行聚类。为了处理不完整的数据源,作者采用MPCK-means聚类算法对一个完整的数据源和以约束形式提供的其他可能不完整的数据源进行探索性分析。本文提出了一种新的聚类算法MSC,利用两个或多个不同但完整的数据源进行探索性分析,研究了约束集的有效性和约束聚类算法使用多源不完整生物数据的鲁棒性,并将这些不完整数据以约束集的形式纳入约束聚类算法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信