Enhancing Traffic Sign Recognition Through Daubechies Discret Wavelet Transform and Convolutional Neural Networks

Rim Trabelsi, K. Nouri, Imen Ammari
{"title":"Enhancing Traffic Sign Recognition Through Daubechies Discret Wavelet Transform and Convolutional Neural Networks","authors":"Rim Trabelsi, K. Nouri, Imen Ammari","doi":"10.1109/IC_ASET58101.2023.10150874","DOIUrl":null,"url":null,"abstract":"Traffic sign recognition (TSR) is an important task in the field of autonomous vehicles and intelligent transportation systems. In this paper, we propose a novel approach to TSR using a combination of Discrete Daubechies Wavelet Transform (DDWT) and Convolutional Neural Networks (CNN). The approach transforms the input image into a wavelet representation using the DDWT and then uses a CNN to classify the traffic sign based on the representation. The proposed TSR method, combining DDWT and CNN, demonstrates high accuracy and efficiency, making it suitable for real-time applications.","PeriodicalId":272261,"journal":{"name":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET58101.2023.10150874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic sign recognition (TSR) is an important task in the field of autonomous vehicles and intelligent transportation systems. In this paper, we propose a novel approach to TSR using a combination of Discrete Daubechies Wavelet Transform (DDWT) and Convolutional Neural Networks (CNN). The approach transforms the input image into a wavelet representation using the DDWT and then uses a CNN to classify the traffic sign based on the representation. The proposed TSR method, combining DDWT and CNN, demonstrates high accuracy and efficiency, making it suitable for real-time applications.
利用离散小波变换和卷积神经网络增强交通标志识别
交通标志识别(TSR)是自动驾驶汽车和智能交通领域的一项重要任务。在本文中,我们提出了一种新的TSR方法,使用离散涂抹小波变换(DDWT)和卷积神经网络(CNN)的组合。该方法使用DDWT将输入图像转换成小波表示,然后使用CNN根据小波表示对交通标志进行分类。本文提出的TSR方法将DDWT和CNN相结合,具有较高的精度和效率,适合于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信