Research on identification algorithm of Hammerstein model

Feng Wang, K. Xing, Xiaoping Xu, Huixia Liu, Xiaojing Sun
{"title":"Research on identification algorithm of Hammerstein model","authors":"Feng Wang, K. Xing, Xiaoping Xu, Huixia Liu, Xiaojing Sun","doi":"10.1109/BICTA.2010.5645355","DOIUrl":null,"url":null,"abstract":"This paper presents a parameter identification method of nonlinear Hammerstein model with two-segment piecewise nonlinearities. Its basic idea is that: First of all, expressing the output of the Hammerstein nonlinear models as a regressive equation in all parameters based on the key term separation principle and separating key term from linear block and nonlinear block. Then, the unknown true outputs in the information vector are replaced with the outputs of an auxiliary model, the unknown internal variables and the unmeasured noise terms are replaced with the estimated internal variables and the estimated residuals, respectively. Accordingly, the problem of the nonlinear system identification is cast as function optimization problem over parameter space; a particle swarm optimization (PSO) algorithm is adopted to solve the optimization problem. In order to further enhance the precision and robust of identification, an improved particle swarm optimization (IPSO) algorithm is applied to search the parameter space to find the optimal estimation of the system parameters. Finally, the feasibility and efficiency of the presented algorithm are demonstrated using numerical simulations.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a parameter identification method of nonlinear Hammerstein model with two-segment piecewise nonlinearities. Its basic idea is that: First of all, expressing the output of the Hammerstein nonlinear models as a regressive equation in all parameters based on the key term separation principle and separating key term from linear block and nonlinear block. Then, the unknown true outputs in the information vector are replaced with the outputs of an auxiliary model, the unknown internal variables and the unmeasured noise terms are replaced with the estimated internal variables and the estimated residuals, respectively. Accordingly, the problem of the nonlinear system identification is cast as function optimization problem over parameter space; a particle swarm optimization (PSO) algorithm is adopted to solve the optimization problem. In order to further enhance the precision and robust of identification, an improved particle swarm optimization (IPSO) algorithm is applied to search the parameter space to find the optimal estimation of the system parameters. Finally, the feasibility and efficiency of the presented algorithm are demonstrated using numerical simulations.
Hammerstein模型识别算法研究
提出了一种具有两段分段非线性的非线性Hammerstein模型的参数辨识方法。其基本思想是:首先,根据关键项分离原理,将关键项从线性块和非线性块中分离出来,将Hammerstein非线性模型的输出表示为所有参数的回归方程。然后,将信息向量中的未知真输出替换为辅助模型的输出,将未知内变量和未测量噪声项分别替换为估计的内变量和估计的残差。据此,将非线性系统辨识问题转化为参数空间上的函数优化问题;采用粒子群优化(PSO)算法求解优化问题。为了进一步提高辨识的精度和鲁棒性,采用改进的粒子群优化算法(IPSO)对参数空间进行搜索,找到系统参数的最优估计。最后,通过数值仿真验证了该算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信