Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification

S. Hatamikia, A. Nasrabadi
{"title":"Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification","authors":"S. Hatamikia, A. Nasrabadi","doi":"10.1109/ICBME.2014.7043946","DOIUrl":null,"url":null,"abstract":"This research aims at investigating the relationship between Electroencephalogram (EEG) signals and human emotional states. A subject-independent emotion recognition system is proposed using EEG signals collected during emotional audio-visual inductions to classify different classes of continuous valence-arousal model. First, four feature extraction methods based on Approximate Entropy, Spectral entropy, Katz's fractal dimension and Petrosian's fractal dimension were used; then, a two-stage feature selection method based on Dunn index and Sequential forward feature selection algorithm (SFS) algorithm was used to select the most informative feature subsets. Self-Organization Map (SOM) classifier was used to classify different emotional classes with the use of 5-fold cross-validation. The best results were achieved using combination of all features by average accuracies of %68.92 and %71.25 for two classes of valence and arousal, respectively. Furthermore, a hierarchical model which was constructed of two classifiers was used for classifying 4 emotional classes of valence and arousal levels and the average accuracy of %55.15 was achieved.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

This research aims at investigating the relationship between Electroencephalogram (EEG) signals and human emotional states. A subject-independent emotion recognition system is proposed using EEG signals collected during emotional audio-visual inductions to classify different classes of continuous valence-arousal model. First, four feature extraction methods based on Approximate Entropy, Spectral entropy, Katz's fractal dimension and Petrosian's fractal dimension were used; then, a two-stage feature selection method based on Dunn index and Sequential forward feature selection algorithm (SFS) algorithm was used to select the most informative feature subsets. Self-Organization Map (SOM) classifier was used to classify different emotional classes with the use of 5-fold cross-validation. The best results were achieved using combination of all features by average accuracies of %68.92 and %71.25 for two classes of valence and arousal, respectively. Furthermore, a hierarchical model which was constructed of two classifiers was used for classifying 4 emotional classes of valence and arousal levels and the average accuracy of %55.15 was achieved.
基于非线性特征提取和SOM分类的音乐视频情绪状态识别
本研究旨在探讨脑电图(EEG)信号与人类情绪状态之间的关系。提出了一种独立于主体的情绪识别系统,利用情绪视听诱导过程中采集的脑电图信号对不同类型的连续价-觉醒模型进行分类。首先,采用基于近似熵、谱熵、Katz分形维数和Petrosian分形维数的四种特征提取方法;然后,采用基于Dunn索引和顺序前向特征选择算法(SFS)的两阶段特征选择方法,选择信息量最大的特征子集;采用自组织映射(SOM)分类器对不同的情绪类别进行分类,并采用5倍交叉验证。对效价和唤醒两类特征的平均准确率分别为%68.92和%71.25。采用两个分类器构建的层次模型对4类情绪的效价和唤醒水平进行分类,平均准确率为%55.15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信