Gender classification using face recognition

Terishka Bissoon, Serestina Viriri
{"title":"Gender classification using face recognition","authors":"Terishka Bissoon, Serestina Viriri","doi":"10.1109/ICASTECH.2013.6707489","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of gender classification using the method of Principal Component Analysis (PCA) for face recognition and classification of human faces. The use of the PCA algorithm has a maximum success rate of 82%. The gender classification system is then improved by using the Linear Discriminant Analysis (LDA. This algorithm has a machine-learning framework by which it trains on a database and using this trained environment to predict the outcome of other images. The classification is restricted to two classes - male and female. Upon using LDA, the success rate increased to approximately 85%. The database used in this paper for the training and testing of images is called the FERET database.","PeriodicalId":173317,"journal":{"name":"2013 International Conference on Adaptive Science and Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Adaptive Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASTECH.2013.6707489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper addresses the issue of gender classification using the method of Principal Component Analysis (PCA) for face recognition and classification of human faces. The use of the PCA algorithm has a maximum success rate of 82%. The gender classification system is then improved by using the Linear Discriminant Analysis (LDA. This algorithm has a machine-learning framework by which it trains on a database and using this trained environment to predict the outcome of other images. The classification is restricted to two classes - male and female. Upon using LDA, the success rate increased to approximately 85%. The database used in this paper for the training and testing of images is called the FERET database.
基于人脸识别的性别分类
本文研究了基于主成分分析(PCA)的人脸识别和人脸分类的性别分类问题。使用PCA算法的最大成功率为82%。然后利用线性判别分析(LDA)对性别分类系统进行改进。该算法有一个机器学习框架,通过该框架,它在数据库上进行训练,并使用这个训练过的环境来预测其他图像的结果。分类仅限于两类——男性和女性。使用LDA后,成功率提高到约85%。本文中用于图像训练和测试的数据库称为FERET数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信