Generalized cyclic transformations in speaker-independent speech recognition

Florian Müller, Eugene Belilovsky, A. Mertins
{"title":"Generalized cyclic transformations in speaker-independent speech recognition","authors":"Florian Müller, Eugene Belilovsky, A. Mertins","doi":"10.1109/ASRU.2009.5373284","DOIUrl":null,"url":null,"abstract":"A feature extraction method is presented that is robust against vocal tract length changes. It uses the generalized cyclic transformations primarily used within the field of pattern recognition. In matching training and testing conditions the resulting accuracies are comparable to the ones of MFCCs. However, in mismatching training and testing conditions with respect to the mean vocal tract length the presented features significantly outperform the MFCCs.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A feature extraction method is presented that is robust against vocal tract length changes. It uses the generalized cyclic transformations primarily used within the field of pattern recognition. In matching training and testing conditions the resulting accuracies are comparable to the ones of MFCCs. However, in mismatching training and testing conditions with respect to the mean vocal tract length the presented features significantly outperform the MFCCs.
非说话人语音识别中的广义循环变换
提出了一种对声道长度变化具有鲁棒性的特征提取方法。它使用了模式识别领域中主要使用的广义循环变换。在匹配训练和测试条件下,得到的准确度与mfccc相当。然而,在不匹配的训练和测试条件下,相对于平均声道长度,所呈现的特征明显优于mfcc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信