Homotopy solution for MHD mixed convective unsteady flow of a Powell-Eyring fluid in a vertical porous space with oscillating wall temperature

R. Muthuraj, R. Selvi
{"title":"Homotopy solution for MHD mixed convective unsteady flow of a Powell-Eyring fluid in a vertical porous space with oscillating wall temperature","authors":"R. Muthuraj, R. Selvi","doi":"10.1504/ijcsm.2020.10030820","DOIUrl":null,"url":null,"abstract":"In this paper, unsteady magnetohydrodynamic (MHD) flow of Powell-Eyring fluid in a vertical channel with diffusion thermo and thermal diffusion effects in the presence of heat source have been studied. The governing nonlinear, coupled partial differential equations are reduced to ODEs using oscillating parameter and then solved by homotopy analysis method (HAM). The influence of emerging parameters on heat and mass transfer characteristics of the flow are studied. It is found that the velocity of a Non-Newtonian fluid is found to decrease in comparison with Newtonian fluid. Also, it is observed that thermal parameters and Soret number are lead to promote the temperature of the fluid significantly. Increasing magnetic parameter tends to produce oscillating behaviour on volume flow rate whereas uniform depreciation can be noticed with increasing Schmidt number.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10030820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, unsteady magnetohydrodynamic (MHD) flow of Powell-Eyring fluid in a vertical channel with diffusion thermo and thermal diffusion effects in the presence of heat source have been studied. The governing nonlinear, coupled partial differential equations are reduced to ODEs using oscillating parameter and then solved by homotopy analysis method (HAM). The influence of emerging parameters on heat and mass transfer characteristics of the flow are studied. It is found that the velocity of a Non-Newtonian fluid is found to decrease in comparison with Newtonian fluid. Also, it is observed that thermal parameters and Soret number are lead to promote the temperature of the fluid significantly. Increasing magnetic parameter tends to produce oscillating behaviour on volume flow rate whereas uniform depreciation can be noticed with increasing Schmidt number.
具有壁面温度振荡的垂直多孔空间中Powell-Eyring流体MHD混合对流非定常的同伦解
本文研究了鲍威尔-埃环流体在具有扩散热和热扩散效应的垂直通道中的非定常磁流体动力学(MHD)流动。将控制非线性耦合偏微分方程利用振荡参数化简为微分方程,然后用同伦分析法求解。研究了新出现的参数对流动传热传质特性的影响。发现非牛顿流体的速度比牛顿流体的速度要小。研究还发现,热参数和索氏数对提高流体温度有显著作用。增大磁参量对体积流量产生振荡行为,增大施密特数则呈现均匀衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信