Equitable development through deep learning: The case of sub-national population density estimation

P. Doupe, Emilie Bruzelius, James H. Faghmous, Samuel G. Ruchman
{"title":"Equitable development through deep learning: The case of sub-national population density estimation","authors":"P. Doupe, Emilie Bruzelius, James H. Faghmous, Samuel G. Ruchman","doi":"10.1145/3001913.3001921","DOIUrl":null,"url":null,"abstract":"High-resolution population density maps are a critical component for global development efforts, including service delivery, resource allocation, and disaster response. Traditional population density efforts are predominantly survey driven, which are laborious, prohibitively expensive, infrequently updated, and inaccurate -- especially in remote areas. Furthermore, these maps are developed on a regional-basis where the methods used vary region to region, hence introducing notable spatio-temporal heterogeneity and bias. The advent of global-scale satellite imagery provides us with an unprecedented opportunity to create inexpensive, accurate, homogeneous, and rapidly updated population maps. To fulfill this vision, we must overcome both infrastructure and methodological obstacles. We propose a convolutional neural network approach that addresses some of the methodological challenges, while employing a publicly available, albeit low resolution, remote sensed product. The method converts satellite images into population density estimates. To explore both the accuracy and generalizability of our approach, we train our neural network on Tanzanian imagery and test the model on Kenyan data. We show that our method is able to generalize to unseen data and we improve upon the current state of the art by 177 percent.","PeriodicalId":204042,"journal":{"name":"Proceedings of the 7th Annual Symposium on Computing for Development","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Annual Symposium on Computing for Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3001913.3001921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

High-resolution population density maps are a critical component for global development efforts, including service delivery, resource allocation, and disaster response. Traditional population density efforts are predominantly survey driven, which are laborious, prohibitively expensive, infrequently updated, and inaccurate -- especially in remote areas. Furthermore, these maps are developed on a regional-basis where the methods used vary region to region, hence introducing notable spatio-temporal heterogeneity and bias. The advent of global-scale satellite imagery provides us with an unprecedented opportunity to create inexpensive, accurate, homogeneous, and rapidly updated population maps. To fulfill this vision, we must overcome both infrastructure and methodological obstacles. We propose a convolutional neural network approach that addresses some of the methodological challenges, while employing a publicly available, albeit low resolution, remote sensed product. The method converts satellite images into population density estimates. To explore both the accuracy and generalizability of our approach, we train our neural network on Tanzanian imagery and test the model on Kenyan data. We show that our method is able to generalize to unseen data and we improve upon the current state of the art by 177 percent.
通过深度学习实现公平发展:以次国家人口密度估算为例
高分辨率人口密度图是全球发展努力的重要组成部分,包括服务提供、资源分配和灾害应对。传统的人口密度工作主要是由调查驱动的,这是费力的、昂贵的、不经常更新的、不准确的——特别是在偏远地区。此外,这些地图是在区域基础上开发的,其中使用的方法因区域而异,因此引入了显著的时空异质性和偏差。全球范围卫星图像的出现为我们提供了一个前所未有的机会来制作廉价、准确、同质和快速更新的人口地图。为了实现这一愿景,我们必须克服基础设施和方法上的障碍。我们提出了一种卷积神经网络方法,该方法解决了一些方法上的挑战,同时采用了公开可用的低分辨率遥感产品。该方法将卫星图像转换为人口密度估计。为了探索我们方法的准确性和泛化性,我们在坦桑尼亚图像上训练我们的神经网络,并在肯尼亚数据上测试模型。我们表明,我们的方法能够推广到看不见的数据,并且我们在目前的艺术状态上提高了177%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信