Research on Computer Information System Based on Neural Network Linear Regression Model

Changjian Huang, Liuchun Zhan, Xianfeng Zeng
{"title":"Research on Computer Information System Based on Neural Network Linear Regression Model","authors":"Changjian Huang, Liuchun Zhan, Xianfeng Zeng","doi":"10.1109/ISoIRS57349.2022.00023","DOIUrl":null,"url":null,"abstract":"Recurrent neural network is a nonlinear dynamical system. This paper firstly introduces the principle of artificial neural network algorithm and the improvement of backpropagation, self-organizing competitive neural network and probabilistic neural network algorithm. At the same time, this paper applies it to fault diagnosis and prediction. Then this paper applies the improvement of back-propagation neural network algorithm, self-organized competitive neural network and probabilistic neural network algorithm to diagnose and predict faults. This paper innovatively introduces an improved backpropagation neural network algorithm with momentum factor to diagnose the actual data and compare it with the traditional one. Finally, this paper proves that the proposed method is effective through Simulink, Spice simulation and hardware circuit experiments.","PeriodicalId":405065,"journal":{"name":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISoIRS57349.2022.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent neural network is a nonlinear dynamical system. This paper firstly introduces the principle of artificial neural network algorithm and the improvement of backpropagation, self-organizing competitive neural network and probabilistic neural network algorithm. At the same time, this paper applies it to fault diagnosis and prediction. Then this paper applies the improvement of back-propagation neural network algorithm, self-organized competitive neural network and probabilistic neural network algorithm to diagnose and predict faults. This paper innovatively introduces an improved backpropagation neural network algorithm with momentum factor to diagnose the actual data and compare it with the traditional one. Finally, this paper proves that the proposed method is effective through Simulink, Spice simulation and hardware circuit experiments.
基于神经网络线性回归模型的计算机信息系统研究
递归神经网络是一个非线性动态系统。本文首先介绍了人工神经网络算法的原理以及反向传播、自组织竞争神经网络和概率神经网络算法的改进。同时,将其应用于故障诊断与预测。然后应用改进后的反向传播神经网络算法、自组织竞争神经网络算法和概率神经网络算法进行故障诊断和预测。本文创新性地引入了一种改进的带动量因子的反向传播神经网络算法来诊断实际数据,并与传统算法进行了比较。最后,通过Simulink、Spice仿真和硬件电路实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信