{"title":"Excalibur: a personalized meta search engine","authors":"L. Yuen, Matthew Chang, Y. K. Lai, C. Poon","doi":"10.1109/CMPSAC.2004.1342671","DOIUrl":null,"url":null,"abstract":"General purpose Web search engines are becoming ineffective due to the rapid growth and changes in the contents of the World Wide Web. Meta-search engines help a bit by having a better coverage of the WWW. However, users are still overwhelmed by the large amount of irrelevant results returned by a search. A promising approach to tackle the problem is personalized search. Thus the problem of capturing users' personal information need and re-organizing the results has attracted a lot of attention. In this paper, we present a meta-search engine that extracts users' preference implicitly and provides immediate response by re-ranking the results. Re-ranking is done by using the Naive Bayesian classifier and the resemblance measure. Moreover, we show that the users' preference can be succinctly represented by a few keywords.","PeriodicalId":355273,"journal":{"name":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2004.1342671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
General purpose Web search engines are becoming ineffective due to the rapid growth and changes in the contents of the World Wide Web. Meta-search engines help a bit by having a better coverage of the WWW. However, users are still overwhelmed by the large amount of irrelevant results returned by a search. A promising approach to tackle the problem is personalized search. Thus the problem of capturing users' personal information need and re-organizing the results has attracted a lot of attention. In this paper, we present a meta-search engine that extracts users' preference implicitly and provides immediate response by re-ranking the results. Re-ranking is done by using the Naive Bayesian classifier and the resemblance measure. Moreover, we show that the users' preference can be succinctly represented by a few keywords.