Efficient Handwritten Curve Approximation by a Bezier Curve Using Chebyshev Polynomials

Rattikarn Jaroensawad, N. Dejdumrong, Somchai Prakancharoen
{"title":"Efficient Handwritten Curve Approximation by a Bezier Curve Using Chebyshev Polynomials","authors":"Rattikarn Jaroensawad, N. Dejdumrong, Somchai Prakancharoen","doi":"10.1109/CGIV.2013.22","DOIUrl":null,"url":null,"abstract":"This paper presents two methodologies for approximating a handwritten curve by a Bézier curve using Chebyshev Polynomials. First, two different featured point selection techniques, are introduced in algorithms 1 and 2. Algorithm 1 uses frequency while algorithm 2 uses the analysis of inflection point. Then, using Chebyshev Polynomials for approximation curve, however a new curve must be adjusted by algorithm 3 because the end points of curve are swing.","PeriodicalId":342914,"journal":{"name":"2013 10th International Conference Computer Graphics, Imaging and Visualization","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference Computer Graphics, Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2013.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents two methodologies for approximating a handwritten curve by a Bézier curve using Chebyshev Polynomials. First, two different featured point selection techniques, are introduced in algorithms 1 and 2. Algorithm 1 uses frequency while algorithm 2 uses the analysis of inflection point. Then, using Chebyshev Polynomials for approximation curve, however a new curve must be adjusted by algorithm 3 because the end points of curve are swing.
使用切比雪夫多项式的Bezier曲线的高效手写曲线逼近
本文提出了用切比雪夫多项式近似一条手写曲线的两种方法。首先,在算法1和算法2中介绍了两种不同的特征点选择技术。算法1使用频率,算法2使用拐点分析。然后,使用切比雪夫多项式逼近曲线,但由于曲线的端点是摆动的,因此必须通过算法3对新曲线进行调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信