Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load

Lucélia Viviane Vaz, G. B. D. S. Filho
{"title":"Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load","authors":"Lucélia Viviane Vaz, G. B. D. S. Filho","doi":"10.12660/BRE.V37N22017.62293","DOIUrl":null,"url":null,"abstract":"The features of the electrical demand and its response to climate variables impose three main features to the load curves: (1) strong inertia, (2) Each observation is a function and (3) cyclical movements. Based on that, we present a generalization of periodic autoregressive models for functional data with functional covariates. We also estimate a functional autoregressive model, where the periodicity of the parameters is induced by harmonic acceleration operators. Using this method, we handle annual load curves, while the first takes into account the daily load curves. We use splines to represent the smooth functions underlying the points. The estimators of the parameters embody the smoothness restrictions enforced on load curves. We compare the Root Mean Squared Error (RMSE) of our models with the RMSE of a benchmark model. We apply this framework to a dataset from the Southeast/Midwest Brazilian Interconnected Power System, from 2003/01/01 to 2011/01/20.","PeriodicalId":332423,"journal":{"name":"Brazilian Review of Econometrics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/BRE.V37N22017.62293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The features of the electrical demand and its response to climate variables impose three main features to the load curves: (1) strong inertia, (2) Each observation is a function and (3) cyclical movements. Based on that, we present a generalization of periodic autoregressive models for functional data with functional covariates. We also estimate a functional autoregressive model, where the periodicity of the parameters is induced by harmonic acceleration operators. Using this method, we handle annual load curves, while the first takes into account the daily load curves. We use splines to represent the smooth functions underlying the points. The estimators of the parameters embody the smoothness restrictions enforced on load curves. We compare the Root Mean Squared Error (RMSE) of our models with the RMSE of a benchmark model. We apply this framework to a dataset from the Southeast/Midwest Brazilian Interconnected Power System, from 2003/01/01 to 2011/01/20.
功能自回归模型:在巴西小时电力负荷中的应用
电力需求的特征及其对气候变量的响应使负荷曲线具有三个主要特征:(1)强惯性;(2)每次观测都是一个函数;(3)周期性运动。在此基础上,我们提出了具有函数协变量的函数数据的周期自回归模型的推广。我们还估计了一个函数自回归模型,其中参数的周期性是由谐波加速算子引起的。使用这种方法,我们处理年负荷曲线,而第一个考虑日负荷曲线。我们用样条来表示点下面的光滑函数。参数的估计量体现了对负荷曲线的平滑性约束。我们将模型的均方根误差(RMSE)与基准模型的RMSE进行比较。我们将此框架应用于2003年1月1日至2011年1月1日期间巴西东南部/中西部互联电力系统的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信