Sufficient Dimension Reduction with Deep Neural Networks for Phenotype Prediction

Siqi Liang, Wei-Heng Huang, F. Liang
{"title":"Sufficient Dimension Reduction with Deep Neural Networks for Phenotype Prediction","authors":"Siqi Liang, Wei-Heng Huang, F. Liang","doi":"10.11159/icsta21.134","DOIUrl":null,"url":null,"abstract":"Phenotype prediction with genome-wide SNPs or biomarkers is a difficult problem in biomedical research due to many issues, such as nonlinearity of the underlying genetic mapping, high-dimensionality of SNP data, and insufficiency of training samples. To tackle this difficulty, we propose a split-and-merge deep neural network (SM-DNN) method, which employs the split-and-merge technique on deep neural networks to obtain nonlinear sufficient dimension reduction of the input data and then learn a deep neural network on the dimension reduced data. We show that the DNN-based dimension reduction is sufficient, which retains all information on response contained in the explanatory data. Our numerical experiments indicate that the SM-DNN method can lead to significant improvement in phenotype prediction for a variety of real data examples. In particular, with only rare variants, we achieved a remarkable prediction accuracy of over 74% for the Early-Onset Myocardial Infarction (EOMI) exome sequence data.","PeriodicalId":403959,"journal":{"name":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta21.134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Phenotype prediction with genome-wide SNPs or biomarkers is a difficult problem in biomedical research due to many issues, such as nonlinearity of the underlying genetic mapping, high-dimensionality of SNP data, and insufficiency of training samples. To tackle this difficulty, we propose a split-and-merge deep neural network (SM-DNN) method, which employs the split-and-merge technique on deep neural networks to obtain nonlinear sufficient dimension reduction of the input data and then learn a deep neural network on the dimension reduced data. We show that the DNN-based dimension reduction is sufficient, which retains all information on response contained in the explanatory data. Our numerical experiments indicate that the SM-DNN method can lead to significant improvement in phenotype prediction for a variety of real data examples. In particular, with only rare variants, we achieved a remarkable prediction accuracy of over 74% for the Early-Onset Myocardial Infarction (EOMI) exome sequence data.
用深度神经网络进行表型预测的充分降维
由于潜在遗传作图的非线性、SNP数据的高维性以及训练样本的不足等问题,利用全基因组SNP或生物标记物进行表型预测一直是生物医学研究中的一个难题。为了解决这一难题,我们提出了一种分裂合并深度神经网络(SM-DNN)方法,该方法利用深度神经网络上的分裂合并技术对输入数据进行非线性充分降维,然后在降维后的数据上学习深度神经网络。我们证明了基于dnn的降维是足够的,它保留了解释数据中包含的所有响应信息。我们的数值实验表明,SM-DNN方法可以显著改善各种实际数据示例的表型预测。特别是,在只有罕见变异的情况下,我们对早发性心肌梗死(EOMI)外显子组序列数据的预测准确率超过74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信