Stochastic and hybrid approaches toward robust templates

M. Hanggi, G. Moschytz
{"title":"Stochastic and hybrid approaches toward robust templates","authors":"M. Hanggi, G. Moschytz","doi":"10.1109/CNNA.1998.685403","DOIUrl":null,"url":null,"abstract":"We propose and compare different methods of synthesizing robust templates for cellular neural networks. In the first approach, genetic algorithms are used for both template learning and optimization with respect to robustness. The evaluation of the fitness functions in the optimization step is computationally very expensive; a massively parallel supercomputer is used to achieve acceptable run times. As alternative approaches, a steepest-ascent method and an averaging approach are presented, the latter being computationally inexpensive. To overcome their respective drawbacks, these algorithms are combined into a hybrid approach which is shown to be efficient even for complex problems.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"39 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose and compare different methods of synthesizing robust templates for cellular neural networks. In the first approach, genetic algorithms are used for both template learning and optimization with respect to robustness. The evaluation of the fitness functions in the optimization step is computationally very expensive; a massively parallel supercomputer is used to achieve acceptable run times. As alternative approaches, a steepest-ascent method and an averaging approach are presented, the latter being computationally inexpensive. To overcome their respective drawbacks, these algorithms are combined into a hybrid approach which is shown to be efficient even for complex problems.
稳健模板的随机和混合方法
我们提出并比较了合成细胞神经网络鲁棒模板的不同方法。在第一种方法中,遗传算法用于模板学习和鲁棒性优化。在优化步骤中适应度函数的评估计算非常昂贵;使用大规模并行超级计算机来实现可接受的运行时间。作为备选方法,提出了最陡上升法和平均法,后者在计算上便宜。为了克服各自的缺点,将这些算法组合成一种混合方法,即使对于复杂的问题也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信