Decoupling Encoder and Decoder Networks for Abstractive Document Summarization

Ying Xu, Jey Han Lau, Timothy Baldwin, Trevor Cohn
{"title":"Decoupling Encoder and Decoder Networks for Abstractive Document Summarization","authors":"Ying Xu, Jey Han Lau, Timothy Baldwin, Trevor Cohn","doi":"10.18653/v1/W17-1002","DOIUrl":null,"url":null,"abstract":"Abstractive document summarization seeks to automatically generate a summary for a document, based on some abstract “understanding” of the original document. State-of-the-art techniques traditionally use attentive encoder–decoder architectures. However, due to the large number of parameters in these models, they require large training datasets and long training times. In this paper, we propose decoupling the encoder and decoder networks, and training them separately. We encode documents using an unsupervised document encoder, and then feed the document vector to a recurrent neural network decoder. With this decoupled architecture, we decrease the number of parameters in the decoder substantially, and shorten its training time. Experiments show that the decoupled model achieves comparable performance with state-of-the-art models for in-domain documents, but less well for out-of-domain documents.","PeriodicalId":113878,"journal":{"name":"MultiLing@EACL","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MultiLing@EACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-1002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Abstractive document summarization seeks to automatically generate a summary for a document, based on some abstract “understanding” of the original document. State-of-the-art techniques traditionally use attentive encoder–decoder architectures. However, due to the large number of parameters in these models, they require large training datasets and long training times. In this paper, we propose decoupling the encoder and decoder networks, and training them separately. We encode documents using an unsupervised document encoder, and then feed the document vector to a recurrent neural network decoder. With this decoupled architecture, we decrease the number of parameters in the decoder substantially, and shorten its training time. Experiments show that the decoupled model achieves comparable performance with state-of-the-art models for in-domain documents, but less well for out-of-domain documents.
解耦编码器和解码器网络用于抽象文档摘要
抽象文档摘要试图基于对原始文档的一些抽象“理解”,自动生成文档摘要。最先进的技术传统上使用细心的编码器-解码器架构。然而,由于这些模型中参数较多,需要较大的训练数据集和较长的训练时间。在本文中,我们提出了解码器和解码器网络的解耦,并分别训练它们。我们使用无监督文档编码器对文档进行编码,然后将文档向量馈送给循环神经网络解码器。采用这种解耦结构,大大减少了译码器的参数数量,缩短了译码器的训练时间。实验表明,对于域内文档,解耦模型与最先进的模型具有相当的性能,但对于域外文档,解耦模型的性能较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信