Converting data-parallelism to task-parallelism by rewrites: purely functional programs across multiple GPUs

Bo Joel Svensson, Michael Vollmer, Eric Holk, T. L. McDonell, Ryan Newton
{"title":"Converting data-parallelism to task-parallelism by rewrites: purely functional programs across multiple GPUs","authors":"Bo Joel Svensson, Michael Vollmer, Eric Holk, T. L. McDonell, Ryan Newton","doi":"10.1145/2808091.2808093","DOIUrl":null,"url":null,"abstract":"High-level domain-specific languages for array processing on the GPU are increasingly common, but they typically only run on a single GPU. As computational power is distributed across more devices, languages must target multiple devices simultaneously. To this end, we present a compositional translation that fissions data-parallel programs in the Accelerate language, allowing subsequent compiler and runtime stages to map computations onto multiple devices for improved performance---even programs that begin as a single data-parallel kernel.","PeriodicalId":440468,"journal":{"name":"Proceedings of the 4th ACM SIGPLAN Workshop on Functional High-Performance Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM SIGPLAN Workshop on Functional High-Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808091.2808093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

High-level domain-specific languages for array processing on the GPU are increasingly common, but they typically only run on a single GPU. As computational power is distributed across more devices, languages must target multiple devices simultaneously. To this end, we present a compositional translation that fissions data-parallel programs in the Accelerate language, allowing subsequent compiler and runtime stages to map computations onto multiple devices for improved performance---even programs that begin as a single data-parallel kernel.
通过重写将数据并行性转换为任务并行性:跨多个gpu的纯功能程序
用于GPU上的数组处理的高级领域特定语言越来越普遍,但它们通常只在单个GPU上运行。随着计算能力分布在更多的设备上,语言必须同时针对多个设备。为此,我们提出了一种组合转换,它在Accelerate语言中分解数据并行程序,允许随后的编译器和运行时阶段将计算映射到多个设备上以提高性能——甚至是作为单个数据并行内核开始的程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信