Bayesian Inference for Survival Analysis in Private Setting

T. T. Nguyen, S. Hui
{"title":"Bayesian Inference for Survival Analysis in Private Setting","authors":"T. T. Nguyen, S. Hui","doi":"10.1109/ICBK.2018.00049","DOIUrl":null,"url":null,"abstract":"Survival analysis is particularly important for modeling the survival probability of patients in clinical research. In this paper, we propose a novel framework for the data privacy problem of estimating the survival function and hazard function using parametric models and flexible parametric models. Our proposed Sampling-A-Posterior (SAP) framework publishes a noisy posterior distribution which is guaranteed to be differentially private. This is different from traditional private approaches which publish a point estimate of the model. In the proposed SAP framework, we represent the likelihood function as a linear combination of basis functions and use the K-norm mechanism to publish the coordinate vector of the total likelihood function. The proposed framework can be applied to design differentially private mechanisms for parametric models and flexible parametric models in survival analysis. The experimental results have shown the effectiveness of the proposed framework on real survival datasets.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Survival analysis is particularly important for modeling the survival probability of patients in clinical research. In this paper, we propose a novel framework for the data privacy problem of estimating the survival function and hazard function using parametric models and flexible parametric models. Our proposed Sampling-A-Posterior (SAP) framework publishes a noisy posterior distribution which is guaranteed to be differentially private. This is different from traditional private approaches which publish a point estimate of the model. In the proposed SAP framework, we represent the likelihood function as a linear combination of basis functions and use the K-norm mechanism to publish the coordinate vector of the total likelihood function. The proposed framework can be applied to design differentially private mechanisms for parametric models and flexible parametric models in survival analysis. The experimental results have shown the effectiveness of the proposed framework on real survival datasets.
私人环境下生存分析的贝叶斯推理
在临床研究中,生存分析对于建立患者生存概率模型尤为重要。本文提出了一种利用参数模型和柔性参数模型估计生存函数和危险函数的数据隐私问题的新框架。我们提出的Sampling-A-Posterior (SAP)框架发布了一个保证差分私有的噪声后验分布。这与传统的私有方法不同,后者发布模型的点估计。在提出的SAP框架中,我们将似然函数表示为基函数的线性组合,并使用k -范数机制发布总似然函数的坐标向量。该框架可应用于生存分析中参数模型和灵活参数模型的差异私有机制设计。实验结果表明了该框架在真实生存数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信