Artificial intelligence approach to predict the dynamic modulus of asphalt concrete mixtures

Thanh-Hai Le, Hoang-Long Nguyen, Cao-Thang Pham
{"title":"Artificial intelligence approach to predict the dynamic modulus of asphalt concrete mixtures","authors":"Thanh-Hai Le, Hoang-Long Nguyen, Cao-Thang Pham","doi":"10.58845/jstt.utt.2022.en53","DOIUrl":null,"url":null,"abstract":"This paper develops an Artificial Neural Network (ANN) model based on 96 experimental data to forecast the dynamic modulus of asphalt concrete mixtures. The accuracy of the models was assessed using numerous performance indexes such as the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2). In addition, this study applied the repeated K-Fold cross-validation technique with 10 folds on the training data set to make the simulation results more reliable and find a model with more general predictive power. According to the research findings, the ANN model accurately predicts the dynamic modulus |E*| of asphalt concrete mixtures. Furthermore, the ANN model could successfully predict the dynamic modulus |E*| of asphalt concrete mixtures with a remarkable R2 = 0.989.","PeriodicalId":117856,"journal":{"name":"Journal of Science and Transport Technology","volume":"316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Transport Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58845/jstt.utt.2022.en53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops an Artificial Neural Network (ANN) model based on 96 experimental data to forecast the dynamic modulus of asphalt concrete mixtures. The accuracy of the models was assessed using numerous performance indexes such as the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2). In addition, this study applied the repeated K-Fold cross-validation technique with 10 folds on the training data set to make the simulation results more reliable and find a model with more general predictive power. According to the research findings, the ANN model accurately predicts the dynamic modulus |E*| of asphalt concrete mixtures. Furthermore, the ANN model could successfully predict the dynamic modulus |E*| of asphalt concrete mixtures with a remarkable R2 = 0.989.
沥青混凝土混合料动态模量的人工智能预测方法
本文基于96个试验数据,建立了一种预测沥青混凝土混合料动态模量的人工神经网络模型。采用多种性能指标,如均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R2)来评估模型的准确性。此外,本研究在训练数据集上应用了10次的重复K-Fold交叉验证技术,使模拟结果更加可靠,并找到具有更一般预测能力的模型。研究结果表明,该ANN模型能够准确预测沥青混凝土混合料的动态模量|E*|。此外,人工神经网络模型能够成功预测沥青混凝土混合料的动态模量|E*|, R2 = 0.989。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信