Unmasking Privacy Leakage through Android Apps Obscured with Hidden Permissions

Pranav Kotak, S. Bhandari, A. Zemmari, Jaykrishna Joshi
{"title":"Unmasking Privacy Leakage through Android Apps Obscured with Hidden Permissions","authors":"Pranav Kotak, S. Bhandari, A. Zemmari, Jaykrishna Joshi","doi":"10.1109/PST52912.2021.9647851","DOIUrl":null,"url":null,"abstract":"Data theft is a significant security threat for mobile app users. The growing importance of digitization motivates the diversity of available applications. In this paper, we propose a novel and lightweight method for classifying Android apps into low, medium, and high-risk categories. Our approach relies largely on the other permissions (also termed as hidden permissions) of the Android applications. We have proposed a linear regression-based technique to classify the apps into different risk categories. We will show how other permissions can be used as a strong indicator for defining risk categories. We have used K-means clustering to validate and explain the decision of our method. In an evaluation with 500 applications and 101 other permissions, our proposed approach decides the risk factor of an app, and the explanation is provided for each detection reveal relevant properties of the detected risk.","PeriodicalId":144610,"journal":{"name":"2021 18th International Conference on Privacy, Security and Trust (PST)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Conference on Privacy, Security and Trust (PST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PST52912.2021.9647851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data theft is a significant security threat for mobile app users. The growing importance of digitization motivates the diversity of available applications. In this paper, we propose a novel and lightweight method for classifying Android apps into low, medium, and high-risk categories. Our approach relies largely on the other permissions (also termed as hidden permissions) of the Android applications. We have proposed a linear regression-based technique to classify the apps into different risk categories. We will show how other permissions can be used as a strong indicator for defining risk categories. We have used K-means clustering to validate and explain the decision of our method. In an evaluation with 500 applications and 101 other permissions, our proposed approach decides the risk factor of an app, and the explanation is provided for each detection reveal relevant properties of the detected risk.
通过隐藏权限隐藏的Android应用揭秘隐私泄露
对于移动应用用户来说,数据盗窃是一个重大的安全威胁。数字化日益增长的重要性激发了可用应用程序的多样性。在本文中,我们提出了一种新颖且轻量级的方法来将Android应用程序分为低、中、高风险三类。我们的方法很大程度上依赖于Android应用程序的其他权限(也称为隐藏权限)。我们提出了一种基于线性回归的技术,将应用程序划分为不同的风险类别。我们将展示如何使用其他权限作为定义风险类别的有力指标。我们使用K-means聚类来验证和解释我们方法的决策。在对500个应用程序和101个其他权限的评估中,我们提出的方法决定了应用程序的风险因素,并为每个检测提供了解释,揭示了检测到的风险的相关属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信