Three-dimensional self-organizing maps for classification of image properties

U. Seiffert, B. Michaelis
{"title":"Three-dimensional self-organizing maps for classification of image properties","authors":"U. Seiffert, B. Michaelis","doi":"10.1109/ANNES.1995.499496","DOIUrl":null,"url":null,"abstract":"The importance of analysing moving scenes within the wide area of digital image processing is increasingly high. Although a simple detection of object velocity by biological models has been considered in previously published papers (A. Tsukamoto et al., 1993; S. Wimbauer et al., 1994; J. Hogden et al., 1993), an implementation of artificial neural networks using a priori information for motion analysis is still quite rare. The paper shows the benefits from artificial neural networks and from using a priori information about the contents of the history in the image sequence to improve accuracy and speed of estimating motion parameters in the cases of distorted or overlapped objects. Firstly, it introduces 3 dimensional self organizing maps (SOM) with 2 dimensional input layers.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The importance of analysing moving scenes within the wide area of digital image processing is increasingly high. Although a simple detection of object velocity by biological models has been considered in previously published papers (A. Tsukamoto et al., 1993; S. Wimbauer et al., 1994; J. Hogden et al., 1993), an implementation of artificial neural networks using a priori information for motion analysis is still quite rare. The paper shows the benefits from artificial neural networks and from using a priori information about the contents of the history in the image sequence to improve accuracy and speed of estimating motion parameters in the cases of distorted or overlapped objects. Firstly, it introduces 3 dimensional self organizing maps (SOM) with 2 dimensional input layers.
用于图像属性分类的三维自组织映射
在数字图像处理的广泛领域中,运动场景分析的重要性越来越高。虽然在以前发表的论文中已经考虑了生物模型对物体速度的简单检测(a . Tsukamoto et al., 1993;S. Wimbauer et al., 1994;J. Hogden et al., 1993),使用先验信息进行运动分析的人工神经网络的实现仍然很少见。本文展示了人工神经网络和使用图像序列中历史内容的先验信息来提高在扭曲或重叠物体情况下估计运动参数的准确性和速度的好处。首先,引入了具有二维输入层的三维自组织映射(SOM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信