Artificial Dendrites: an Algorithm

Zachary S. Hutchinson
{"title":"Artificial Dendrites: an Algorithm","authors":"Zachary S. Hutchinson","doi":"10.1109/CogMI50398.2020.00033","DOIUrl":null,"url":null,"abstract":"This paper outlines preliminary work on an algorithm to create dendritic, tree-like structures by arranging spines in R3 using directional forces. Each spine is attracted to its neighbor based on the temporal coincidence of afferent action potentials. The resulting spine location spatially encodes activation patterns. Proximity to the soma and to each other determines connectivity within an acyclic graph. Dendritic branches carry back-propagating action potentials used for credit assignment by Hebbian-style learning. Preliminary results suggest this method could be used to create spiking neural networks consisting of dendritic neurons capable of pattern recognition.","PeriodicalId":360326,"journal":{"name":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Second International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI50398.2020.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper outlines preliminary work on an algorithm to create dendritic, tree-like structures by arranging spines in R3 using directional forces. Each spine is attracted to its neighbor based on the temporal coincidence of afferent action potentials. The resulting spine location spatially encodes activation patterns. Proximity to the soma and to each other determines connectivity within an acyclic graph. Dendritic branches carry back-propagating action potentials used for credit assignment by Hebbian-style learning. Preliminary results suggest this method could be used to create spiking neural networks consisting of dendritic neurons capable of pattern recognition.
人工树突:一个算法
本文概述了一种算法的初步工作,该算法通过使用定向力在R3中排列棘来创建树突,树状结构。根据传入动作电位的时间重合,每个脊柱被相邻的脊柱所吸引。由此产生的脊柱位置在空间上编码激活模式。邻近的soma和彼此决定连通性在一个无环图。树突分支携带反向传播动作电位,用于赫比式学习的学分分配。初步结果表明,这种方法可以用来创建由具有模式识别能力的树突神经元组成的尖峰神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信