Probabilistic Economic and Adequacy Evaluation of the Zero-Carbon Power Systems with CCUS

Tianying Yu, Peixuan Li, Zitong Wang, Qing-Yu Xiong, Weifeng Wang, Haipeng Xie
{"title":"Probabilistic Economic and Adequacy Evaluation of the Zero-Carbon Power Systems with CCUS","authors":"Tianying Yu, Peixuan Li, Zitong Wang, Qing-Yu Xiong, Weifeng Wang, Haipeng Xie","doi":"10.1109/ACPEE53904.2022.9783966","DOIUrl":null,"url":null,"abstract":"Under the ambition of carbon neutrality, the new energy installed capacity witnesses rapid growth worldwide. Therefore, with the goal of minimizing load shedding and maximizing new energy consumption in zero-carbon power systems, this study proposes a probabilistic economic and adequacy evaluation method. First, the paper modeled coal-fired power plants with carbon capture, utilization and storage (CCUS) equipment, concentrating solar power (CSP) plants with thermal energy storage (TES) systems, wind power plants, photovoltaic power plants and battery energy storage systems (BESS) in the zero-carbon power system. In the coal-fired power plants with CCUS equipment, the constraints of electric power output and zero carbon emissions were considered; considering the time-series state of charge constraint, a model of the battery energy storage system was established; considering the SOC of the thermal energy storage system and power balance constraints, a CSP plant model was established. The sequential Monte Carlo simulation method is used to build the process framework of probabilistic economic and adequacy evaluation. The uncertainty of new energy sources and load, and the stochastic outage of components are all considered in the framework. The effectiveness of the probabilistic economic and adequacy evaluation method for the zero-carbon power system was verified by the in-depth analysis of the modified IEEE RTS79.","PeriodicalId":118112,"journal":{"name":"2022 7th Asia Conference on Power and Electrical Engineering (ACPEE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th Asia Conference on Power and Electrical Engineering (ACPEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPEE53904.2022.9783966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Under the ambition of carbon neutrality, the new energy installed capacity witnesses rapid growth worldwide. Therefore, with the goal of minimizing load shedding and maximizing new energy consumption in zero-carbon power systems, this study proposes a probabilistic economic and adequacy evaluation method. First, the paper modeled coal-fired power plants with carbon capture, utilization and storage (CCUS) equipment, concentrating solar power (CSP) plants with thermal energy storage (TES) systems, wind power plants, photovoltaic power plants and battery energy storage systems (BESS) in the zero-carbon power system. In the coal-fired power plants with CCUS equipment, the constraints of electric power output and zero carbon emissions were considered; considering the time-series state of charge constraint, a model of the battery energy storage system was established; considering the SOC of the thermal energy storage system and power balance constraints, a CSP plant model was established. The sequential Monte Carlo simulation method is used to build the process framework of probabilistic economic and adequacy evaluation. The uncertainty of new energy sources and load, and the stochastic outage of components are all considered in the framework. The effectiveness of the probabilistic economic and adequacy evaluation method for the zero-carbon power system was verified by the in-depth analysis of the modified IEEE RTS79.
具有CCUS的零碳电力系统的概率经济和充分性评估
在碳中和的雄心下,全球新能源装机容量快速增长。因此,本研究以零碳电力系统减载最小化和新能源消耗最大化为目标,提出了一种概率经济和充分性评估方法。首先,本文建立了零碳电力系统中具有碳捕集利用与封存(CCUS)设备的燃煤电厂、具有热储能(TES)系统的聚光太阳能(CSP)电厂、风力发电厂、光伏发电厂和电池储能系统(BESS)的模型。在配备CCUS设备的燃煤电厂中,考虑了发电量约束和零碳排放约束;考虑时间序列电荷约束状态,建立了电池储能系统模型;考虑蓄热系统的SOC和功率平衡约束,建立了光热电站模型。采用序贯蒙特卡罗模拟法构建了概率经济性和充分性评价的过程框架。该框架考虑了新能源和负荷的不确定性以及部件的随机停运。通过对改进后的IEEE RTS79的深入分析,验证了零碳电力系统概率经济性和充分性评估方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信