{"title":"A Variational Inequality Model for the Construction of Signals from Inconsistent Nonlinear Equations","authors":"P. L. Combettes, Zev Woodstock","doi":"10.1137/21m1420368","DOIUrl":null,"url":null,"abstract":"Building up on classical linear formulations, we posit that a broad class of problems in signal synthesis and in signal recovery are reducible to the basic task of finding a point in a closed convex subset of a Hilbert space that satisfies a number of nonlinear equations involving firmly nonexpansive operators. We investigate this formalism in the case when, due to inaccurate modeling or perturbations, the nonlinear equations are inconsistent. A relaxed formulation of the original problem is proposed in the form of a variational inequality. The properties of the relaxed problem are investigated and a provenly convergent block-iterative algorithm, whereby only blocks of the underlying firmly nonexpansive operators are activated at a given iteration, is devised to solve it. Numerical experiments illustrate robust recoveries in several signal and image processing applications.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1420368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Building up on classical linear formulations, we posit that a broad class of problems in signal synthesis and in signal recovery are reducible to the basic task of finding a point in a closed convex subset of a Hilbert space that satisfies a number of nonlinear equations involving firmly nonexpansive operators. We investigate this formalism in the case when, due to inaccurate modeling or perturbations, the nonlinear equations are inconsistent. A relaxed formulation of the original problem is proposed in the form of a variational inequality. The properties of the relaxed problem are investigated and a provenly convergent block-iterative algorithm, whereby only blocks of the underlying firmly nonexpansive operators are activated at a given iteration, is devised to solve it. Numerical experiments illustrate robust recoveries in several signal and image processing applications.