Identifying the attitude of dynamic systems using neuralnetwork

Ahmed M.ELDakrory, M. Tawfik
{"title":"Identifying the attitude of dynamic systems using neuralnetwork","authors":"Ahmed M.ELDakrory, M. Tawfik","doi":"10.1109/RST.2016.7869856","DOIUrl":null,"url":null,"abstract":"Modeling of dynamic systems using system identification became an important discipline as it overrides the errors that may be introduced by traditional modelling techniques. There are two methodologies for identification of systems' models; statistical and deterministic methods. Identification algorithms are proposed in this paper using deterministic neural network and compare the results with regression method. Here the authors are interested in identifying the input output relation of many dynamic systems such as satellites, UAV, Quadcopters etc.....","PeriodicalId":366239,"journal":{"name":"2016 International Workshop on Recent Advances in Robotics and Sensor Technology for Humanitarian Demining and Counter-IEDs (RST)","volume":"393 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Workshop on Recent Advances in Robotics and Sensor Technology for Humanitarian Demining and Counter-IEDs (RST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RST.2016.7869856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modeling of dynamic systems using system identification became an important discipline as it overrides the errors that may be introduced by traditional modelling techniques. There are two methodologies for identification of systems' models; statistical and deterministic methods. Identification algorithms are proposed in this paper using deterministic neural network and compare the results with regression method. Here the authors are interested in identifying the input output relation of many dynamic systems such as satellites, UAV, Quadcopters etc.....
用神经网络识别动态系统的姿态
使用系统识别对动态系统进行建模成为一门重要的学科,因为它克服了传统建模技术可能引入的错误。有两种识别系统模型的方法;统计和确定性方法。本文提出了一种基于确定性神经网络的辨识算法,并与回归方法进行了比较。在这里,作者感兴趣的是识别许多动态系统的输入输出关系,如卫星,无人机,四轴飞行器等.....
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信